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Summary
HNN-core is a library for circuit and cellular level interpretation of non-invasive human magneto-
/electro-encephalography (MEG/EEG) data. It is based on the Human Neocortical Neurosolver
(HNN) software (Neymotin et al., 2020), a modeling tool designed to simulate multiscale neural
mechanisms generating current dipoles in a localized patch of neocortex. HNN’s foundation is
a biophysically detailed neural network representing a canonical neocortical column containing
populations of pyramidal and inhibitory neurons together with layer-specific exogenous synaptic
drive (Figure 1 left). In addition to simulating network-level interactions, HNN produces the
intracellular currents in the long apical dendrites of pyramidal cells across the cortical layers
known to be responsible for macroscopic current dipole generation.

HNN-core reproduces the workflows and tutorials provided in the original HNN software
to generate commonly observed MEG/EEG signals including evoked response potentials
(ERPs) and alpha (8-10 Hz), beta (15-30 Hz), and gamma (30-80 Hz) rhythms. HNN-
core enables simultaneous calculation and visualization of macro- to micro-scale dynamics
including MEG/EEG current dipoles, local field potential, laminar current-source density,
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and cell spiking and intrinsic dynamics. Importantly, HNN-core adopts modern open source
development standards including a simplified installation procedure, unit tests, automatic
documentation builds, code coverage, continuous integration, and contributing guidelines,
supporting community development and long-term sustainability.

Statement of need
HNN-core addresses a key need in the fields of computational and experimental neuroscience
by providing an extensively documented application programming interface (API) that allows
both novel and advanced users to run biophysically-principled neural network simulations
out-of-the-box with a few lines of code. HNN-core modularizes the model components
originally introduced by HNN and its associated graphical user interface (GUI) and provides
an interface to modify it directly from Python. This has allowed for significant expansion of
the HNN functionality through scripting, including the ability to modify additional features
of local network connectivity and cell properties, record voltages in extracellular arrays, and
more advanced parameter optimization and batch processing. A new web-based GUI has
been developed as a thin layer over the Python interface making the overall software more
maintainable.

HNN-core implements a biophysically detailed model to interpret
MEG/EEG primary current sources
MEG/EEG are the two electrophysiological methods to non-invasively study the human brain.
They have been used in developing biomarkers for healthy and pathological brain processes.
Yet, the underlying cellular and circuit level generators of MEG/EEG signals have been difficult
to infer. This detailed understanding is critical to develop theories of information processing
based on these signals, or to use these techniques to develop new therapeutics. Computational
neural modeling is a powerful technique to hypothesize the neural origin of these signals and
several modeling frameworks have been developed. Since MEG/EEG recordings are dominated
by neocortical sources, all models developed so far simulate neocortical activity, but they are
developed with different levels of biophysical detail and correspondingly different use cases. The
level of detail in HNN’s pre-tuned network models and the workflows developed to study ERPs
and low frequency oscillations are unique within the field of MEG/EEG modeling. One class of
models known as neural mass models (NMMs) uses simplified representations to simulate net
population dynamics, where hypothesized connectivity among neural “nodes” can be inferred
from recordings. The Virtual Brain Project (Sanz Leon et al., 2013) and Dynamic Causal
Modeling from the SPM software (Friston et al., 2003; Litvak et al., 2011) are prominent
examples of software that implement NMMs. While NMMs are computationally tractable and
advantageous for studying brain-wide interactions, they do not provide detailed interpretation
of cell and circuit level phenomena underlying MEG/EEG. The primary electrical currents
that create MEG/EEG sensor signals are known to be oriented along the long and spatially
aligned cortical pyramidal neuron dendrites, and their direction corresponds to that of the
intracellular current flow (Hämäläinen et al., 1993). For a detailed discussion see Neymotin
et al. (2020). Further, source localization methods such as minimum-norm estimate (MNE)
calculate the primary currents (assuming constraints defined by the technique (Gramfort et
al., 2013)). As such, models created to study the cell and circuit origin of these signals are
designed with detailed pyramidal neuron morphology and physiology, and are often embedded
in a full neocortical column model. HNN is one such detailed neocortical column model
(Neymotin et al., 2020), and other examples have been employed using the software LFPy
(Lindén et al., 2014). LFPy simulates fields and currents from detailed models of pyramidal
neurons and networks (Lindén et al., 2014). LFPy does not support a specific neocortical
model or workflows/parameter inference to study particular signals of interest. Rather, it
provides multi-use Python scripts that can be integrated into any NEURON based neural
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model containing multi-compartment pyramidal neurons. A unique feature of HNN is its
workflows for interacting with the template neocortical model through layer-specific activations
to study ERPs and low frequency brain rhythms. HNN also enables direct comparison between
simulation output and the waveforms of estimated sources in the same units of measure and
supports parameter inference. HNN-core was created to maintain all of the functionality
of the original HNN software with additional utility (described below) and a well-defined,
well-tested and documented API. Its adoption of open source development standards, including
a simplified installation procedure, unit tests, automatic documentation builds, code coverage,
and continuous integration, enables community development and long-term sustainability.

HNN-core facilitates reproducibility and computationally expen-
sive workflows
Scripting in HNN-core greatly expands the software utility particularly for large research projects
where reproducibility and batch processing is of key importance. The scripted interface allows
multi-trial simulations enabling the use of computationally expensive parameter optimization
algorithms and parameter sweeps using parallel processing on computer clusters. HNN scripting
also facilitates the creation of publication-quality figures and advanced statistical analysis.
Further, the software can be integrated with existing scripted workflows, such as those developed
in MNE-Python (Gramfort et al., 2013), a well-established MEG/EEG signal processing and
source localization software, enabling source localization and circuit interpretation in just a
few lines of code (see a tutorial of this in the HNN-core documentation).

Notable features of HNN-core
HNN-core functionality supports advanced simulations through scripting that are not currently
possible in the GUI including:

• the ability to record extracellular local field potentials from user defined positions, as
well as voltages and synaptic currents from any compartment in the model;

• the ability to modify all features of the morphology and biophysical properties of any
cell in the network;

• an API that enables complete control of cell-cell and drive-cell connectivity in the network;
• an API that allows for flexibility in defining the exogenous layer-specific drive to the

neocortical network;
• the ability to choose from multiple template models based on previous publications (e.g.,

jones_2009_model() (Jones et al., 2009), law_2021_model() (Law et al., 2022), and
calcium_model() adapted from (Kohl et al., 2022));

• built-in ERP optimization functionality designed for faster convergence;
• the choice of two parallel backends for either parallelizing across cells to speed up

individual simulations (MPI), or across trials to speed up batches of simulations (Joblib).

HNN-core code has also enabled the creation of a new and improved web-based GUI based on
ipywidgets (Jupyter widgets community, 2015) and voila (Voilà community, 2019) that can be
run remotely with port forwarding.

All of the code associated with HNN-core has been extensively documented at multiple levels,
including an API describing basic functions/parameters and examples of use for hypothesis
generation and/or testing. Specifically, we distribute tutorials that mimic the original GUI
tutorial workflows using HNN-core functions, with commentary on the known biophysical
mechanisms of these signals.
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Use cases and quick example code of running a simulation
As summarized above, HNN-core reproduces the workflows and tutorials provided in the original
GUI driven HNN software designed to investigate the origin of commonly observed MEG/EEG
signals. The HNN-core tutorials include examples of how to simulate ERPs, as well as low
frequency rhythms such as alpha (8-10 Hz), beta (15-30 Hz), and gamma (30-80 Hz). The
tutorials also include an example of directly comparing simulations to real data (i.e., the median
nerve evoked response). We also provide short and targeted “How to” examples that describe
how to use specific functionality, such as plotting firing patterns, or recording extracellular
LFPs.

In practice, users learn how to study the multi-scale origin of ERPs and low frequency oscillations
by first following the tutorials in the HNN-GUI, and then recapitulating these tutorials in
HNN-core. The tutorials provide an interactive investigation that gives intuition on how
exogenous drives and other parameters in the model impact the outputs of the simulations.
From there, users can test hypotheses about what parameters or sets of parameters need to be
adjusted to account for their recorded data by directly comparing simulation output to data.
Automated parameter inference can be performed to optimize parameters to produce a close
fit (i.e., small root mean squared error) to current source ERPs, and more advanced parameter
inference methods are in development.

HNN-core has minimal dependencies which allows for effortless installation using the pip
Python installer. In addition to NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),
and Matplotlib (Hunter, 2007) common in most libraries in the scientific Python stack, HNN-
core uses NEURON (Hines & Carnevale, 1997) for the cell and circuit modeling. Here,
we demonstrate how the HNN-core interface can be used to quickly simulate and plot the
net cortical dipole response to a brief exogenously evoked drive representing “feedforward”
thalamocortical input (Figure 1 right). This input (referred to as ‘evprox1’) effectively targets
the proximal dendrites of the pyramidal neurons in L2/3 and L5, using the template neocortical
model as in Jones et al. (2009) (Figure 1 left). Note that this simulation is not addressing a
specific scientific question, and is simply an educational example.

from hnn_core import jones_2009_model, simulate_dipole

# 1) Create the network model

net = jones_2009_model()

# 2) Define weights and delay times of inputs to network

weights_ampa = {'L2_basket': 0.09, 'L2_pyramidal': 0.02,

'L5_basket': 0.2, 'L5_pyramidal': 8e-3}

synaptic_delays = {'L2_basket': 0.1, 'L2_pyramidal': 0.1,

'L5_basket': 1.0, 'L5_pyramidal': 1.0}

# 3) Attach inputs to to network

net.add_evoked_drive(name='evprox1', mu=20.0, sigma=2.0, numspikes=1,

weights_ampa=weights_ampa, location='proximal',

synaptic_delays=synaptic_delays)

# 4) Run simulation and plot results

dpl = simulate_dipole(net, tstop=100.0)
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Figure 1: Left: Reduced schematic of HNN model detailing the cell types, layer-specific synap-
tic connectivity structure, and locations of proximal drive synapses. The default size of the full
network is a grid of 100 pyramidal neurons, and 35 inhibitory neurons, synaptically connected in
each layer. Figure adapted from Neymotin et al. (2020). Right: Plots of the network and simu-
lated results can be generated using the HNN-core visualization API. The drive input histogram with
net.cell_response.plot_spikes_hist(), the net current dipole with plot_dipole(dpl), and the spike
raster with net.cell_response.plot_spikes_raster().

Ongoing research using HNN-core
The scripted interface of HNN-core has enabled the development of advanced parameter
inference techniques (Tolley et al., 2023) using Simulation-Based Inference (Tejero-Cantero et
al., 2020). It has been used in Thorpe et al. (2021) to propose new mechanisms of innocuous
versus noxious sensory processing in the primary somatosensory neocortex. Lankinen et al.
(2023) have used HNN-core to study crossmodal interactions between auditory and visual
cortices. They performed group analysis on multiple subjects along with optimization and
nonparametric statistical testing. Additionally, Szul et al. (2023) used it for understanding
features of beta bursts in motor cortex and Fernandez Pujol et al. (2023) to study auditory
perception.

Overall, HNN-core provides an expandable and sustainable Python-based software package
that can help advance understanding of the cellular and circuit mechanisms of MEG/EEG
signal generation and ultimately lead to new neuroscience discoveries.
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