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Summary
DREiMac is a library for topological data coordinatization, visualization, and dimensionality
reduction. Currently, DREiMac is able to find topology-preserving representations of point
clouds taking values in the circle, in higher dimensional tori, in the real and complex projective
spaces, and in lens spaces.

In a few words, DREiMac takes as input a point cloud together with a topological feature of
the point cloud (in the form of a persistent cohomology class), and returns a map from the
point cloud to a well-understood topological space (a circle, a product of circles, a projective
space, or a lens space), which preserves the given topological feature in a precise sense.

DREiMac is based on persistent cohomology (de Silva et al., 2011a), a method from topological
data analysis; the theory behind DREiMac is developed in Perea (2020), Perea (2018), Polanco
& Perea (2019), and Scoccola et al. (2023). DREiMac is implemented in Python, using
Numba (Lam et al., 2015) for the more expensive computations, and Ripser (Bauer, 2021)
and its Python wrapper (Tralie et al., 2018) for persistent homology computations. We test
DREiMac periodically in Ubuntu, macOS, and Windows.

The documentation for DREiMac can be found here.

Statement of need and main contributions
Topological coordinatization is witnessing increased application in domains such as neuroscience
(Gardner et al., 2022; Kang et al., 2021; Rybakken et al., 2019), dynamical systems (Vejdemo-
Johansson et al., 2015), and dimensionality reduction (Scoccola & Perea, 2023). The fast
implementations and data science integrations provided in DREiMac are aimed at enabling
other domain scientists in their pursuits.

To the best of our knowledge, the only publicly available software packages implementing
cohomological coordinates based on persistent cohomology are Dionysus (Morozov, 2012)
and Ripserer (Čufar, 2020). Dionysus and Ripserer are general purpose libraries for persistent
homology, which in particular implement the original circular coordinates algorithm of de Silva
et al. (2011b), and the sparse circular coordinates algorithm of Perea (2020), respectively.

DREiMac adds to the current landscape of cohomological coordinates software by implementing
various currently missing functionalities; we elaborate on these below. DREiMac also includes
functions for generating topologically interesting datasets for testing, various geometrical
utilities including functions for manipulating the coordinates returned by the algorithms, and
several example notebooks including notebooks illustrating the effect of each of the main
parameters of the algorithms.

Sparse algorithms. All of DREiMac’s coordinates are sparse, meaning that persistent cohomol-
ogy computations are carried on a simplicial complex built on a small sample of the full point
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cloud. This gives a significant speedup when compared to algorithms which use a simplicial
complex built on the entire dataset, since the persistent cohomology computation is the most
computationally intensive part of the algorithm. For a precise description of the notion of
sparseness, see the papers that develop the algorithms that DREiMac implements (Perea, 2018,
2020; Polanco & Perea, 2019; Scoccola et al., 2023).

Improvements to the circular coordinates algorithm. DREiMac implements two new function-
alities addressing two issues that can arise when computing circular coordinates for data.

The circular coordinates algorithm turns a cohomology class with coefficients in ℤ into a map
into the circle. However, since persistent cohomology is computed with coefficients in a field,
the cohomology class is obtained by lifting a cohomology class with coefficients in ℤ/𝑞ℤ, with
𝑞 a prime. This lift can fail to be a cocycle, resulting in discontinuous coordinates, which
are arguably not meaningful; see Figure 1 (right). An algebraic procedure for fixing this issue
is described in de Silva et al. (2011b), but has thus far not been implemented. DREiMac
implements this using integer linear programming.

Figure 1: Parametrizing the circularity of a trefoil knot in 3D. Here we display a 2-dimensional
representation, but the 3-dimensional point cloud does not have self intersections (in the sense that
it is locally 1-dimensional everywhere). On the right, the output of the circular coordinates algorithm
without applying the algebraic procedure to fix the lift of the cohomology class. On the left, the ouput
of DREiMac, which implements this fix. Details about this example can be found in the documentation.

Another practical issue of the circular coordinates algorithm is its performance in the presence
of more than one large scale circular feature (Figures 2 and 3). To address this, DREiMac
implements the toroidal coordinates algorithm, introduced in Scoccola et al. (2023), which
allows the user to select several 1-dimensional cohomology classes and returns coordinates that
parametrize these circular features in a simpler fashion.

Figure 2: Parametrizing the circularity of a surface of genus two in 3D. Here we display a 2-dimensional
representation, but the 3-dimensional point cloud does not have self intersections (in the sense that
it is locally 2-dimensional everywhere). This is DREiMac’s output obtained by running the toroidal
coordinates algorithm. The output of running the circular coordinates algorithm is in Figure 3. Details
about this example can be found in the documentation.
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Figure 3: Parametrizing the circularity of a surface of genus two in 3D. This output is obtained by
running the circular coordinates algorithm. The parametrization obtained is arguably less interpretable
than that obtained by the toroidal coordinates algorithm, shown in Figure 2.

Previously not implemented cohomological coordinates. DREiMac implements real projective,
complex projective, and lens coordinates, introduced in Perea (2018) and Polanco & Perea
(2019). These allow the user to construct topologically meaningful coordinates for point clouds
using cohomology classes with coefficients in ℤ/2ℤ, ℤ, and ℤ/𝑞ℤ (𝑞 a prime), respectively,
and in cohomological dimensions 1, 2, and 1, respectively.

Example
We illustrate DREiMac’s capabilities by showing how it parametrizes the large scale circular
features of the unprecessed COIL-20 dataset (Nene et al., 1996); details about this example
can be found in the documentation. The dataset consists of gray-scale images of 5 objects,
photographed from different angles. As such, it consists of 5 clusters, each cluster exhibiting
one large scale circular feature; see Figure 4.

Figure 4: Persistent cohomology of 5 clusters of unprocessed COIL-20 dataset.

We use single-linkage to cluster the data into 5 clusters and compute the persistent cohomology
of each cluster. We then run the circular coordinates algorithm on each cluster, using the
most prominent cohomology class of each cluster. We display the result in Figure 5.
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Figure 5: Unprocessed COIL-20 parametrized by clustering and circular coordinates.

Statement of contribution
J.A.P.: initial MATLAB implementation (not part of this software) and design of this software.
C.T. and L.S.: design and implementation.
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