
PyDGN: a Python Library for Flexible and
Reproducible Research on Deep Learning for Graphs
Federico Errica 1¶, Davide Bacciu 2, and Alessio Micheli 2

1 NEC Laboratories Europe, Germany 2 University of Pisa, Italy ¶ Corresponding author
DOI: 10.21105/joss.05713

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @idoby
• @sepandhaghighi

Submitted: 26 June 2023
Published: 01 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The use of standardized evaluation procedures is a key component in the Machine Learning
(ML) field to determine whether new approaches grant real advantages over others. This
is especially true for fast-growing research areas, where a substantial amount of literature
relentlessly appears every day. In the graph machine learning field, some evaluation issues
have already been brought to light and partially addressed, but a general-purpose library for
rigorous evaluations and reproducible experiments is lacking. We therefore introduce a new
Python library, called PyDGN, to provide users with a system that lets them focus on models’
development while ensuring empirical rigor and reproducibility of their results.

Statement of need
To date, the graph ML community (Bronstein et al., 2017; Hamilton et al., 2017; Micheli,
2009; Scarselli et al., 2009; Sperduti & Starita, 1997; Wu et al., 2020) has already developed
benchmarking software to re-evaluate existing models on a fixed set of datasets (Errica et al.,
2020; Hu et al., 2020; Liu et al., 2021; Shchur et al., 2018). In addition, existing libraries such
as PyTorch Geometric (PyG) (Fey & Lenssen, 2019), Deep Graph Library (DGL) (Wang et al.,
2019), and Spektral (Grattarola & Alippi, 2021) provide the building blocks of Deep Graph
Networks (DGNs) (Bacciu et al., 2020), also known as message-passing architectures (Gilmer
et al., 2017), effectively acting as the backbone of most graph ML software packages. Other
libraries, such as GraphGym (You et al., 2020), allow the user to explore the design of existing
DGNs by running hyper-parameter tuning experiments in parallel, but the customization is
mostly limited to the models and does not allow, for instance, a modular extension of data
splitting techniques, evaluation strategies, or experiments with a custom logic. This limits the
ability of a researcher to use these libraries to carry out new and possibly original research.

The community therefore lacks a software library that is specifically dedicated to ensuring
reproducibility and replicability of experiments without compromising the flexibility required
by our everyday research. To fill this gap, we have developed PyDGN, a Python library for
Deep Graph Networks research. PyDGN builds upon PyTorch (Paszke et al., 2019) and PyTorch

Geometric (PyG) (Fey & Lenssen, 2019) to handle graph-structured data and reuse efficient
implementations of machine learning models. It exploits Ray to run experiments in parallel
(also on clusters of machines) and it supports GPU computation for faster executions. Our
goal is to help practitioners and researchers to focus on the development of their models and
to effortlessly evaluate them under fair, robust, and reproducible experimental conditions, thus
mitigating empirical malpractices that often occur in the ML community (Errica et al., 2020;
Lipton & Steinhardt, 2018; Shchur et al., 2018). PyDGN has already been used in a number of
research projects that have been published at top-tier venues, as listed in the official GitHub
repository.

Errica et al. (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source
Software, 8(90), 5713. https://doi.org/10.21105/joss.05713.

1

https://orcid.org/0000-0001-5181-2904
https://orcid.org/0000-0001-5213-2468
https://orcid.org/0000-0001-5764-5238
https://doi.org/10.21105/joss.05713
https://github.com/openjournals/joss-reviews/issues/5713
https://github.com/diningphil/PyDGN/
https://doi.org/10.5281/zenodo.8396373
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/idoby
https://github.com/sepandhaghighi
https://creativecommons.org/licenses/by/4.0/
https://www.ray.io/
https://developer.nvidia.com/cuda-toolkit
https://github.com/diningphil/PyDGN
https://github.com/diningphil/PyDGN
https://doi.org/10.21105/joss.05713


Figure 1: PyDGN is logically organized into different modules that cover specific aspects of the entire
evaluation’s pipeline, from data creation to a model’s risk assessment.

We refer the reader to Figure 1 for a visual depiction of the main components. We remark
that all modules, with the exception of the one responsible for evaluation (due to its standard
behavior), are readily extensible and promote rapid prototyping through code reuse.

How to use it
Users can easily prepare and launch their evaluations through configuration files, one for the
data preparation and the second for the actual experiment. In the former, the user specifies: i)
how to split the data; ii) the dataset to use; and iii) optional data transformations. In the
second file, the user indicates: i) data and splits; ii) hardware devices and parallelism; iii)
hyper-parameter configurations for model selection; iv) training-specific details like metrics and
optimizer. Dedicated scripts prepare the data, its splits, launch the experiments and compute
results. The PyDGN documentation helps the user understand the main mechanisms through
tutorials and examples.

Data preparation

A recurrent issue in the evaluation of ML models is that they are compared using different
data splits. The first step to reproducibility is thus the creation and retention of such splits:
we provide code that partitions the data depending on the required graph/node/link prediction
scenarios. Since splitting depends on the type of evaluation procedure, we cover hold-out,
k-fold, and nested/double k-fold cross validation, which are the most common evaluation
schemas in the ML literature.

To create and use a dataset, we provide an interface to easily specify pre-processing as
well as runtime processing of graphs; we extend the available dataset classes in PyG to
achieve this goal. In addition, a data provider automatically retrieves the correct data subset
(training/validation/test) during an experiment, making sure the user does not involuntarily
leak test data into training/validation. An example on how to split a dataset to carry out a
10-fold cross validation with inner hold-out model selection is shown below:

splitter:

root: DATA_SPLITS

class_name: pydgn.data.splitter.Splitter

args:

n_outer_folds: 10

Errica et al. (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source
Software, 8(90), 5713. https://doi.org/10.21105/joss.05713.

2

https://pydgn.readthedocs.io/
https://doi.org/10.21105/joss.05713


n_inner_folds: 1

seed: 42

stratify: True

shuffle: True

inner_val_ratio: 0.1

outer_val_ratio: 0.1

test_ratio: 0.1

Evaluation procedures

PyDGN is equipped with routines that remove the burden of performing model selection and risk
assessment from the users. This reduces chances of empirical flaws and favors reproducible
experiments. After model selection, the best configuration (with respect to the validation
set) is re-trained and evaluated on the test set. In addition, a start-and-stop mechanism can
resume execution of unfinished experiments when the whole evaluation is interrupted. These
procedures are completely transparent to the user and handled in accordance to the data splits.

Experiment templates

We define an abstract interface for each experiment that consists of two methods, run_valid
and run_test. The first is called during the model selection, and the second is called during
risk assessment of the model. This should act as a reminder that the user cannot access the
test data when performing a model-selection procedure (that is, run_valid), thus reducing the
chances of test data leakage. Our library ships with two standard experiments, an end-to-end
training on a single task and two-step training where first we compute unsupervised node/graph
embeddings and then apply a supervised predictor on top of them to solve a downstream task.
These two implementations cover most use cases and ensure that the different data splits are
used in the correct way.

Implementing models

To implement a DGN in our library, it is sufficient to adhere to a very simple interface that
specifies initialization arguments and the type of output for the prediction step. The user
wraps the interface around a PyG model to have it immediately working. This strategy allows
the user to focus entirely on the development of the model regardless of all the code necessary
to run the training pipeline, akin to what happens in (You et al., 2020). The library will
automatically provide the current hyper-parameter configuration to be evaluated to the model
in the form of a dictionary config. To create a new model, the user simply has to subclass
ModuleInterface and implement the two methods

class MyModel(pydgn.model.interface.ModelInterface):

def __init__(self,

dim_node_features, dim_edge_features, dim_target,

readout_class, config: dict):

...

def forward(self, data):

...

where data is a PyG Batch object containing a batch of input graphs.

Training via publish-subscribe

The interaction between all components of a training pipeline is perhaps the trickiest part
to implement in any machine learning project. One false step, and nothing works. PyDGN’s
training engine implements all boilerplate code regarding the training loop, and it relies on the
publish-subscribe design pattern to trigger the execution of callbacks at specific points in the

Errica et al. (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source
Software, 8(90), 5713. https://doi.org/10.21105/joss.05713.

3

https://doi.org/10.21105/joss.05713


training procedure. Every metric, early stopping, scheduler, gradient clipper, optimizer, data
fetcher, and stats plotter implements some of these callbacks; when a callback is triggered,
a shared state object is passed as argument to allow communication between the different
components of the training process. For instance, extending the MeanSquaredError loss to
compute its logarithm is as easy as doing

class LogMSE(pydgn.training.callback.metric.MeanSquareError):

@property

def name(self):

return "LOG Mean Square Error"

def compute_metric(self, targets, predictions):

mse_metric = super().compute_metric(targets, predictions)

return torch.log(mse_metric)

The new metric can be already referenced and used in the configuration file by referrint it as
my_metric_file.LogMeanSquareError. It will also be automatically logged on Tensorboard
by the Plotter callback if the latter is enabled.

Key Design Considerations
Two important aspects make PyDGN a user-friendly choice for everyday research.

First, PyDGN’s use of configuration files allows users to add new hyper-parameters without
needing to modify any extra code. This feature simplifies the customization of a model
while prototyping it to keep the user focused on the main task, that is, the definition and
implementation of a model, ignoring all the boilerplate code used to forward the new hyper-
parameters to the model’s class initializer.

Additionally, the publish-subcribe design pattern keeps the codebase organized and flexible.
Users can connect different components as needed using a shared state object, making it
adaptable to various use cases. Most of the time, refining a training loop only requires
subclassing the desired callbacks, simplifying the overall development process.

In summary, PyDGN’s configuration files and event-based design pattern enhance its usability,
making it a practical tool for researchers by simplifying customization and maintaining code
flexibility. These features empower researchers to efficiently achieve their research goals.

Acknowledgements
We acknowledge contributions from Antonio Carta, Danilo Numeroso, Daniele Castellana,
Alessio Gravina, Francesco Landolfi, and support from Marco Podda during the genesis of this
project. The authors would like to thank the reviewers Ido Ben-Yair and Sepand Haghighi for
the constructive feedback that greatly improved the paper and the installation procedure.

References
Bacciu, D., Errica, F., Micheli, A., & Podda, M. (2020). A gentle introduction to deep learning

for graphs. Neural Networks, 129, 203–221. https://doi.org/10.1016/j.neunet.2020.06.006

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric
deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4), 25.
18–42. https://doi.org/10.1109/MSP.2017.2693418

Errica, F., Podda, M., Bacciu, D., & Micheli, A. (2020). A fair comparison of graph neural
networks for graph classification. 8th International Conference on Learning Representations

Errica et al. (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source
Software, 8(90), 5713. https://doi.org/10.21105/joss.05713.

4

https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.21105/joss.05713


(ICLR).

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric.
Representation Learning on Graphs and Manifolds Workshop, International Conference on
Learning Representations (ICLR).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message
passing for quantum chemistry. Proceedings of the 34th International Conference on
Machine Learning (ICML), 1263–1272.

Grattarola, D., & Alippi, C. (2021). Graph neural networks in TensorFlow and keras with
spektral. IEEE Computational Intelligence Magazine, 16(1), 99–106. https://doi.org/10.
1109/MCI.2020.3039072

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 40(3), 52–74.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., & Leskovec, J. (2020).
Open graph benchmark: Datasets for machine learning on graphs. Proceedings of the 34th
Conference on Neural Information Processing Systems (NeurIPS), 22118–22133.

Lipton, Z. C., & Steinhardt, J. (2018). Troubling trends in machine learning scholarship. arXiv
Preprint arXiv:1807.03341.

Liu, M., Luo, Y., Wang, L., Xie, Y., Yuan, H., Gui, S., Yu, H., Xu, Z., Zhang, J., Liu, Y., Yan,
K., Liu, H., Fu, C., Oztekin, B. M., Zhang, X., & Ji, S. (2021). DIG: A turnkey library for
diving into graph deep learning research. Journal of Machine Learning Research, 22(240),
1–9.

Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3), 498–511. https://doi.org/10.1109/TNN.2008.
2010350

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS).

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.
https://doi.org/10.1109/TNN.2008.2005605

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph neural
network evaluation. Workshop on Relational Representation Learning, Neural Information
Processing Systems (NeurIPS).

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(3), 714–735. https://doi.org/10.1109/72.572108

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao,
T., He, T., Karypis, G., Li, J., & Zhang, Z. (2019). Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv Preprint arXiv:1909.01315.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems. https://doi.org/10.1109/TNNLS.2020.2978386

You, J., Ying, Z., & Leskovec, J. (2020). Design space for graph neural networks. Proceedings
of the 34th Conference on Neural Information Processing Systems (NeurIPS).

Errica et al. (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source
Software, 8(90), 5713. https://doi.org/10.21105/joss.05713.

5

https://doi.org/10.1109/MCI.2020.3039072
https://doi.org/10.1109/MCI.2020.3039072
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/72.572108
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.21105/joss.05713

	Summary
	Statement of need
	How to use it
	Data preparation
	Evaluation procedures
	Experiment templates
	Implementing models
	Training via publish-subscribe

	Key Design Considerations

	Acknowledgements
	References

