
TensorInference: A Julia package for tensor-based
probabilistic inference
Martin Roa-Villescas 1* and Jin-Guo Liu 2*

1 Eindhoven University of Technology 2 Hong Kong University of Science and Technology (Guangzhou)
* These authors contributed equally.

DOI: 10.21105/joss.05700

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @emstoudenmire
• @gdalle

Submitted: 22 July 2023
Published: 03 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
A major challenge in developing intelligent systems is the ability to reason under uncertainty, a
challenge that appears in many real-world problems across various domains, including artificial
intelligence, medical diagnosis, computer vision, computational biology, and natural language
processing. Reasoning under uncertainty involves calculating the probabilities of relevant
variables while taking into account any information that is acquired. This process, which can
be thought of as drawing global insights from local observations, is known as probabilistic
inference.

Probabilistic graphical models (PGMs) provide a unified framework to perform probabilistic
inference. These models use graphs to represent the joint probability distribution of complex
systems in a concise manner by exploiting the conditional independence between variables in
the model. Additionally, they form the foundation for various algorithms that enable efficient
probabilistic inference.

However, even with the representational aid of PGMs, performing probabilistic inference remains
an intractable endeavor on many real-world models. The reason is that performing probabilistic
inference involves complex combinatorial optimization problems in very high dimensional spaces.
To tackle these challenges, more efficient and scalable inference algorithms are needed.

As an attempt to tackle the aforementioned challenges, we present TensorInference.jl, a
Julia package for probabilistic inference that combines the representational capabilities of
PGMs with the computational power of tensor networks. By harnessing the best of both worlds,
TensorInference.jl aims to enhance the performance of probabilistic inference, thereby
expanding the tractability spectrum of exact inference for more complex, real-world models.

Summary
Probabilistic inference entails the process of drawing conclusions from observed data through
the axioms of probability theory. Inference algorithms fall into two broad categories: exact and
approximate methods. The main challenge in applying exact inference to real-world problems
is its NP-hard computational complexity tied to the model’s treewidth, a metric of network
connectivity. This has prompted a research shift to approximate methods like Markov chain
Monte Carlo and variational inference. Prominent examples of packages that implement such
algorithms include Stan (Carpenter et al., 2017), PyMC3 (Oriol et al., 2023), Turing.jl (Ge et
al., 2018), and RxInfer.jl (Bagaev et al., 2023). However, while these methods offer superior
scalability, they do not provide formal guarantees of accuracy — a challenge that is, in itself,
NP-hard to address. Consequently, exact inference methods are gaining renewed interest for
their promise of higher accuracy.

TensorInference.jl is a Julia (Bezanson et al., 2017) package designed for performing exact

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

1

https://orcid.org/0009-0009-0291-503X
https://orcid.org/0000-0003-1635-2679
https://doi.org/10.21105/joss.05700
https://github.com/openjournals/joss-reviews/issues/5700
https://github.com/TensorBFS/TensorInference.jl
https://doi.org/10.5281/zenodo.8399580
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/emstoudenmire
https://github.com/gdalle
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05700

probabilistic inference in discrete graphical models. Capitalizing on the recent advances in
the field of tensor networks (Orús, 2014, 2019; Robeva & Seigal, 2019), TensorInference.jl
offers high-performance solutions for prevalent inference problems. Specifically, it provides
methods to:

1. calculate the partition function (also known as the probability of evidence).
2. compute the marginal probability distribution over each variable given evidence.
3. find the most likely assignment to all variables given evidence.
4. find the most likely assignment to a set of query variables after marginalizing out the

remaining variables.
5. draw samples from the posterior distribution given evidence (Cheng et al., 2019; Han et

al., 2018).

A tensor is a mathematical object that generalizes scalars, vectors, and matrices to higher
dimensions. In essence, it is a multi-dimensional array of numbers, often used for representing
complex data structures in physics, engineering, computer science, and data analytics. A tensor
network consists of a set of tensors in which some or all indices are contracted according to a
specific pattern (Jutho et al., 2023). The term contraction refers to the summation over all
the possible values along one or more dimensions of a set of tensors. These networks excel at
capturing the correlations of different states in complex systems.

The order in which tensor indices are contracted plays a pivotal role in computational efficiency.
Different contraction sequences can produce the same mathematical outcome, but the com-
putational costs can vary by orders of magnitude. Since tensor network methods frequently
involve multiple contractions, optimizing the contraction order becomes crucial.

The use of a tensor network-based infrastructure (Jutho et al., 2023) offers several advantages
when dealing with complex computational tasks. Firstly, it simplifies the process of computing
gradients by employing differentiable programming (Liao et al., 2019), a critical operation
for the aforementioned inference tasks. Secondly, it supports generic element types without
a significant compromise on performance. This feature enables the solution of a variety of
problems using the same tensor network contraction algorithm, simply by varying the element
types used. This allowed us to seamlessly implement solutions for several of the inference
tasks described above (Liu et al., 2021, 2022). Thirdly, it allows users to define a hyper-
optimized contraction order, which is known to have a significant impact on the computational
performance of contracting tensor networks (Gao et al., 2021; Markov & Shi, 2008; Pan &
Zhang, 2022). TensorInference.jl provides a predefined set of state-of-the-art contraction
ordering methods, each identified by a specific name for ease of reference. These methods
include a local search-based method, denoted as TreeSA (Kalachev et al., 2022), two methods
based on min-cut algorithms, denoted as SABipartite and KaHyParBipartite (Gray & Kourtis,
2021); as well as a greedy algorithm, denoted as GreedyMethod. Lastly, TensorInference.jl
leverages the cutting-edge developments commonly found in tensor network libraries, including
a highly optimized set of BLAS routines (Blackford et al., 2002) and GPU technology.

TensorInference.jl succeeds JunctionTrees.jl (Roa-Villescas et al., 2022, 2023), a Julia
package implementing the Junction Tree Algorithm (JTA) (Jensen et al., 1990; Lauritzen
& Spiegelhalter, 1988). While the latter employs tensor-based technology to optimize the
computation of individual sum-product messages within the JTA context, TensorInference.jl
takes a different route. It adopts a holistic tensor network approach, which opens new doors
for optimization opportunities and significantly reduces the algorithm’s complexity compared
to the JTA. Other prominent examples of exact inference packages for probabilistic inference
include libDAI (Mooij, 2010), Merlin (Marinescu, 2022), and toulbar2 (Hurley et al., 2016).
For a performance comparison of TensorInference.jl against these alternatives, please see
the Performance evaluation section in the documentation of TensorInference.jl.

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

2

https://tensorbfs.github.io/TensorInference.jl/dev/performance-evaluation/
https://doi.org/10.21105/joss.05700

Usage example
The graph below corresponds to the ASIA network (Lauritzen & Spiegelhalter, 1988), a simple
Bayesian network (Pearl, 1985) used extensively in educational settings. It describes the
probabilistic relationships between different random variables which correspond to possible
diseases, symptoms, risk factors and test results.

𝐴
∢ 𝑆

𝑇
?

𝐿
?

𝐵
?

𝐸

𝑋 𝐷
∢

Random variable Meaning

A Recent trip to Asia
T Patient has tuberculosis
S Patient is a smoker
L Patient has lung cancer
B Patient has bronchitis
E Patient has T and/or L
X Chest X-Ray is positive
D Patient has dyspnoea

Figure 1: The ASIA network: a simplified example of a Bayesian network from the context of medical
diagnosis (Lauritzen & Spiegelhalter, 1988).

In the example, a patient has recently visited Asia and is now experiencing dyspnea. These
conditions serve as the evidence for the observed variables (𝐴 and 𝐷). The doctor’s task is to
assess the likelihood of various diseases — tuberculosis, lung cancer, and bronchitis — which
constitute the query variables in this scenario (𝑇, 𝐿, and 𝐵).

We now demonstrate how to use TensorInference.jl for conducting a variety of inference
tasks on this toy example. Please note that as the API may evolve, we recommend checking
the examples directory of the official TensorInference.jl repository for the most up-to-date
version of this example.

Import the TensorInference package, which provides the functionality needed

for working with tensor networks and probabilistic graphical models.

In [1]: using TensorInference

Load the ASIA network model from `asia.uai` in the examples directory.

Refer to the package documentation for a description of the format of this file.

model = read_model_file(pkgdir(TensorInference, "examples", "asia", "asia.uai"))

Create a tensor network representation of the loaded model.

tn = TensorNetworkModel(model)

Out [1]: TensorNetworkModel{Int64, OMEinsum.DynamicNestedEinsum{Int64}, Array{Float64}}

variables: 1, 2, 3, 4, 5, 6, 7, 8

contraction time = 2^6.044, space = 2^2.0, read-write = 2^7.098

Calculate the partition function. Since the factors in this model are

normalized, the partition function is the same as the total probability, 1.

In [2]: probability(tn) |> first

Out [2]: 1.0000000000000002

Calculate the marginal probabilities of each random variable in the model.

In [3]: marginals(tn)

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

3

https://github.com/TensorBFS/TensorInference.jl/tree/main/examples
https://doi.org/10.21105/joss.05700

Out [3]: Dict{Vector{Int64}, Vector{Float64}} with 8 entries:

[8] => [0.435971, 0.564029]

[3] => [0.5, 0.5]

[1] => [0.01, 0.99]

[5] => [0.45, 0.55]

[4] => [0.055, 0.945]

[6] => [0.064828, 0.935172]

[7] => [0.11029, 0.88971]

[2] => [0.0104, 0.9896]

Set the evidence to assume that the 'X-ray' result (variable 7) is negative.

Recompute the contraction order of the tensor network, as setting the evidence

may affect it.

In [4]: tn = TensorNetworkModel(model, evidence = Dict(7 => 0))

Out [4]: TensorNetworkModel{Int64, OMEinsum.DynamicNestedEinsum{Int64}, Array{Float64}}

variables: 1, 2, 3, 4, 5, 6, 7 (evidence → 0), 8

contraction time = 2^6.0, space = 2^2.0, read-write = 2^7.066

Calculate the maximum log-probability among all configurations.

In [5]: maximum_logp(tn)

Out [5]: 0-dimensional Array{Float64, 0}:

-3.6522217920023303

Generate 10 samples from the posterior distribution.

In [6]: sample(tn, 10)

Out [6]: 10-element TensorInference.Samples{Int64}:

[1, 1, 0, 0, 1, 0, 0, 0]

[1, 1, 1, 1, 1, 1, 0, 1]

[1, 0, 1, 1, 1, 0, 0, 0]

[1, 1, 0, 1, 1, 1, 0, 1]

[1, 1, 0, 0, 1, 0, 0, 0]

[1, 1, 0, 0, 1, 0, 0, 0]

[1, 1, 0, 1, 0, 1, 0, 0]

[1, 1, 0, 0, 0, 0, 0, 0]

[1, 1, 0, 0, 1, 0, 0, 1]

[1, 1, 0, 1, 1, 1, 0, 0]

Retrieve both the maximum log-probability and the most probable configuration

In [7]: logp, cfg = most_probable_config(tn)

Out [7]: (-3.6522217920023303, [1, 1, 0, 0, 0, 0, 0, 0])

Compute the most probable values for a subset of variables (e.g., 4 and 7)

while marginalizing over the others. This process is known as Maximum a

Posteriori (MAP) estimation.

In [8]: mmap = MMAPModel(model, evidence=Dict(7=>0), queryvars=[4,7])

Out [8]: MMAPModel{Int64, Array{Float64}}

variables: 4, 7 (evidence → 0)

query variables: [[1, 2, 6, 5, 3, 8]]

contraction time = 2^6.0, space = 2^2.0, read-write = 2^7.0

Get the most probable configurations for variables 4 and 7.

In [9]: most_probable_config(mmap)

Out [9]: (-2.8754627318176693, [1, 0])

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

4

https://doi.org/10.21105/joss.05700

Compute the total log-probability of having lung cancer. The results suggest

that the probability is roughly half.

In [10]: log_probability(mmap, [1, 0]), log_probability(mmap, [0, 0])

Out [10]: (-2.8754627318176693, -2.920624801067186)

Acknowledgments
This work is partially funded by the Netherlands Organization for Scientific Research and
the Guangzhou Municipal Science and Technology Project (No. 2023A03J0003). We extend
our gratitude to Madelyn Cain and Patrick Wijnings for their insightful discussions on the
intersection of tensor networks and probabilistic graphical models.

References
Bagaev, D., Podusenko, A., & Vries, B. de. (2023). RxInfer: A Julia package for reactive

real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161. https:
//doi.org/10.21105/joss.05161

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., Dongarra,
J., Duff, I., Hammarling, S., Henry, G., & others. (2002). An updated set of basic
linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2),
135–151. https://doi.org/10.1145/567806.567807

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1).

Cheng, S., Wang, L., Xiang, T., & Zhang, P. (2019). Tree tensor networks for generative
modeling. Physical Review B, 99(15), 155131. https://doi.org/10.1103/PhysRevB.99.
155131

Gao, X., Kalinowski, M., Chou, C.-N., Lukin, M. D., Barak, B., & Choi, S. (2021). Limitations
of linear cross-entropy as a measure for quantum advantage. https://doi.org/10.48550/
arXiv.2112.01657

Ge, H., Xu, K., & Ghahramani, Z. (2018). Turing: A language for flexible probabilistic
inference. International Conference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, 1682–1690. http:
//proceedings.mlr.press/v84/ge18b.html

Gray, J., & Kourtis, S. (2021). Hyper-optimized tensor network contraction. Quantum, 5, 410.
https://doi.org/10.22331/q-2021-03-15-410

Han, Z.-Y., Wang, J., Fan, H., Wang, L., & Zhang, P. (2018). Unsupervised generative
modeling using matrix product states. Physical Review X, 8(3), 031012. https://doi.org/
10.1103/PhysRevX.8.031012

Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., & Givry, S. de.
(2016). Multi-language evaluation of exact solvers in graphical model discrete optimization.
Constraints, 21(3), 413–434. https://doi.org/10.1007/s10601-016-9245-y

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating in causal probabilistic
networks by local computations. Computational Statistics Quarterly, 4, 269–282.

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

5

https://doi.org/10.21105/joss.05161
https://doi.org/10.21105/joss.05161
https://doi.org/10.1137/141000671
https://doi.org/10.1145/567806.567807
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.48550/arXiv.2112.01657
https://doi.org/10.48550/arXiv.2112.01657
http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1007/s10601-016-9245-y
https://doi.org/10.21105/joss.05700

Jutho, Lukas, ho-oto, maartenvd, getzdan, Liu, J.-G., Aluthge, D., Florian, Lyon, S., Morley,
A., Privett, A., Brann, D., Iouchtchenko, D., Saba, E., Otto, F., Garrison, J., Bhattacharya,
J., Feist, J., TagBot, J., … jemiryguo. (2023). Jutho/TensorOperations.jl: v4.0.0 (Version
v4.0.0). Zenodo. https://doi.org/10.5281/zenodo.8166121

Kalachev, G., Panteleev, P., & Yung, M.-H. (2022). Multi-tensor contraction for XEB
verification of quantum circuits. https://doi.org/10.48550/arXiv.2108.05665

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal Statistical
Society: Series B (Methodological), 50(2), 157–194. https://doi.org/10.1111/j.2517-6161.
1988.tb01721.x

Liao, H.-J., Liu, J.-G., Wang, L., & Xiang, T. (2019). Differentiable programming tensor
networks. Physical Review X, 9(3), 031041. https://doi.org/10.1103/PhysRevX.9.031041

Liu, J.-G., Gao, X., Cain, M., Lukin, M. D., & Wang, S.-T. (2022). Computing solution
space properties of combinatorial optimization problems via generic tensor networks. arXiv.
https://doi.org/10.48550/ARXIV.2205.03718

Liu, J.-G., Wang, L., & Zhang, P. (2021). Tropical tensor network for ground states of spin
glasses. Physical Review Letters, 126(9). https://doi.org/10.1103/physrevlett.126.090506

Marinescu, R. (2022). Merlin.

Markov, I. L., & Shi, Y. (2008). Simulating quantum computation by contracting tensor net-
works. SIAM Journal on Computing, 38(3), 963–981. https://doi.org/10.1137/050644756

Mooij, J. M. (2010). LibDAI: A free and open source C++ library for discrete approximate
inference in graphical models. Journal of Machine Learning Research, 11, 2169–2173.
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf

Oriol, A.-P., Virgile, A., Colin, C., Larry, D., J., F. C., Maxim, K., Ravin, K., Jupeng, L., C.,
L. C., A., M. O., Michael, O., Ricardo, V., Thomas, W., & Robert, Z. (2023). PyMC:
A modern and comprehensive probabilistic programming framework in Python. PeerJ
Computer Science, 9, e1516. https://doi.org/10.7717/peerj-cs.1516

Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349, 117–158. https://doi.org/10.
1016/j.aop.2014.06.013

Orús, R. (2019). Tensor networks for complex quantum systems. Nature Reviews Physics,
1(9), 538–550. https://doi.org/10.1038/s42254-019-0086-7

Pan, F., & Zhang, P. (2022). Simulation of quantum circuits using the big-batch tensor network
method. Phys. Rev. Lett., 128, 030501. https://doi.org/10.1103/PhysRevLett.128.030501

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning.
Proc. Of Cognitive Science Society (CSS-7).

Roa-Villescas, M., Liu, J.-G., Wijnings, P. W. A., Stuijk, S., & Corporaal, H. (2023). Scal-
ing probabilistic inference through message contraction optimization. 2023 Congress in
Computer Science, Computer Engineering, & Applied Computing (CSCE).

Roa-Villescas, M., Wijnings, P. W. A., Stuijk, S., & Corporaal, H. (2022). Partial evaluation in
junction trees. 2022 25th Euromicro Conference on Digital System Design (DSD), 429–437.
https://doi.org/10.1109/DSD57027.2022.00064

Robeva, E., & Seigal, A. (2019). Duality of graphical models and tensor networks. Information
and Inference: A Journal of the IMA, 8(2), 273–288. https://doi.org/10.1093/imaiai/
iay009

Roa-Villescas, & Liu. (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90),
5700. https://doi.org/10.21105/joss.05700.

6

https://doi.org/10.5281/zenodo.8166121
https://doi.org/10.48550/arXiv.2108.05665
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.48550/ARXIV.2205.03718
https://doi.org/10.1103/physrevlett.126.090506
https://doi.org/10.1137/050644756
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.1109/DSD57027.2022.00064
https://doi.org/10.1093/imaiai/iay009
https://doi.org/10.1093/imaiai/iay009
https://doi.org/10.21105/joss.05700

	Statement of need
	Summary
	Usage example
	Acknowledgments
	References

