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Summary
This paper presents a Python package called pycapacity, which provides a set of tools for
evaluating task-space physical ability metrics for humans and robots, based on polytopes and
ellipsoids. The aim of pycapacity is to provide a set of efficient tools for their evaluation in an
easy to use framework that can be easily integrated with standard robotics and biomechanics
libraries. The package implements several state of the art algorithms for polytope evaluation
that bring many of the polytope metrics to the few milliseconds evaluation time, making it
possible to use them in online and interactive applications.

The package can be easily interfaced with standard libraries for robotic manipulator rigid body
simulation such as robotictoolbox (Corke & Haviland, 2021) or pinocchio (Carpentier et al.,
2019), as well as human musculoskeletal model biomechanics software opensim (Delp et al.,
2007) and biorbd (Michaud & Begon, 2021). The package can also be used with the Robot
Operating System (ROS) (Quigley et al., 2009).

The package additionally implements a set of visualization tools for polytopes and ellipsoids
based on the Python package matplotlib intended for fast prototyping and quick and interactive
visualization.

Statement of need
There is a rising interest in collaborative robotics and physical human robot interaction, where
the robots are often required to adapt to certain needs of the human in real-time. This
adaptation raises a fundamental challenge: the ability to evaluate the need of assistance of the
operator. One way to quantify the need of assistance is by evaluating the operator’s physical
abilities in real-time and comparing them to the physical abilities required to execute the task.
Having this real-time information enables creating collaborative robot control strategies that
assist the operators by compensating for their lacking physical ability to accomplish the tasks.

Beyond the characterization of human physical capabilities, as today’s collaborative robotic
manipulators are designed for safety, their performance characteristics are relatively limited
with respect to the more standard industrial robots. Therefore it is becoming increasingly
important to exploit their full (physical) abilities when executing their task.

There are many different metrics available in the literature that might be used to characterize
physical abilities: force capacity, velocity capacity, acceleration capacity, accuracy, stiffness
etc. Most of these metrics can be represented by two families of geometric shapes: ellipsoids
(Yoshikawa, 1985) and polytopes (Chiacchio et al., 1996). These metrics are traditionally
important tools for off-line analysis purposes (workspace design, human motion and ergonomics
analysis) and recently, they have shown a great potential to be used for interactive online
applications, to be integrated in robot control strategies or as a visual feedback to the operator.
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Ellipsoid metrics are often used for evaluating the manipulability of the robot’s end-effector. The
manipulability ellipsoid is a geometric shape that represents the robot’s ability to move within
the task-space. Due to their computational efficiency and intuitive visualization, they have been
used in many different applications, such as robot control, workspace design, robot design, etc.
Therefore, there are several open-source packages that implement the manipulability ellipsoid
evaluation and visualization, such as MMC (Haviland & Corke, 2020), manipulability_metrics
(Prada, 2023), Manipulability (N. Jaquier et al., 2021; Noémie Jaquier, 2023). However,
most of these packages are limited to the evaluation of the manipulability ellipsoid, representing
the velocity capacity, and they do not provide tools for evaluating other ellipsoid metrics, such
as force capacity, acceleration capacity, etc. Additionally these software packages are often
developed for the use with a specific robotics library, such as robotic-toolbox (Corke &
Haviland, 2021) or ROS (Quigley et al., 2009), and they are not trivial to integrate with other
libraries.

Even though different efficient tools for evaluating ellipsoids are widely available in the literature
and open-source community, the tools for evaluating polytopes are still relatively scarce. The
main reason for this is that the polytopes are in general more complex to evaluate and
manipulate than ellipsoids. However, the polytopes are much more accurate representation of
the true limits. Additionally, polytopes are easy to visualize, as they are essentially triangulated
meshes, and they can be easily integrated in the robot control strategies, as they can be
expressed as a set of linear constraints.

The evaluation of polytopes is often a computationally expensive task, as their resolution
requires using different vertex and facet enumeration algorithms (Fukuda, 2004). Therefore,
their computation time is often the limiting factor for the use of polytopes in real world
applications, especially when it comes to their online use. Furthermore, even though there
are several open-source projects that implement polytope evaluation algorithms, such as
pypoman (Caron, 2023), Multi-Parametric Toolbox 3 (Herceg et al., 2013) or cddlib (Fukuda,
1997; Zurich, 2023), they are often very generic and not easy to use with standard physical
ability polytopes. On the other hand, more specific polytope resolution software solutions,
such as Constrained Manipulability package (Philip Long, 2023; P. Long & Padir, 2018) or
pygradientpolytope (Sagar, 2023), are often very specific to their applications, they lack the
documentation and flexibility to be extended to new metrics and integrated with other libraries.

Therefore, this paper presents a Python pycapacity package in an effort to provide a set of
tools specifically tailored for evaluating task-space physical ability metrics for humans and
robots, based on polytopes and ellipsoids. This package groups a set of efficient algorithms
for their evaluation in an easy to use framework that can be easily integrated with standard
robotics and biomechanics libraries. Furthermore, the package implements several state of
the art algorithms for polytope evaluation that bring many of the polytope metrics to the
few milliseconds evaluation time, making it possible to use them in online and interactive
applications.

pycapacity has been used in several scientific papers, for real-time control of collaborative
carrying using two Franka Emika Panda robots (Skuric et al., 2021), for developing an assist-as-
needed control strategy for collaborative carrying task of the human operator and the Franka
robot (Skuric et al., 2022). The package has also been used to calculate the approximation of
the robot’s reachable space using convex polytope (Skuric et al., 2023). On the other hand,
the package has been used for the biomechanical calibration of the human musculoskeletal
models (Laisné et al., 2023).

Ellipsoids and polytopes as physical ability metrics
In robotics, task-space physical ability metrics establish the relationship between different
limits of robot’s actuators (joint positions, velocities, torques, etc.), their kinematics and
dynamics, and the achievable sets of different task related physical quantities, such as achievable
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positions, velocities, forces and similar. Similar metrics can be established for humans as well,
by leveraging their musculoskeletal models. Where the humans in addition to the joint limits
(joint positions and velocities) have additional limits due to using their muscles as actuators
(contraction forces and velocities).

When it comes to characterizing these achievable sets, the two most common approaches
are using ellipsoids and polytopes. Ellipsoids are often used to represent the robot’s velocity
capacity, so called manipulability, while polytopes are mostly used to represent the robot’s
force capacity. However, both ellipsoids and polytopes can be used to represent any of the
task-space physical ability.

To compare the ellipsoid and polytope metrics, the example of the manipulability ellipsoid and
manipulability polytope can be used.

The manipulability ellipsoid 𝐸, proposed by (Yoshikawa, 1985), is defined as the set of all
achievable task-space velocities ̇𝑥 for a given robot configuration 𝑞 and joint velocity limits
−1 ≤ ̇𝑞 ≤ 1, and it can be expressed as:

𝐸 = { ̇𝑥 | ̇𝑥 = 𝐽(𝑞) ̇𝑞, || ̇𝑞||2 ≤ 1} (1)

The equivalent polytope 𝑃 representation of the manipulability ellipsoid is the manipulability
polytope, which is defined as the set of all achievable task-space velocities ̇𝑥 for a given robot
configuration 𝑞 and joint velocity limits −1 ≤ ̇𝑞 ≤ 1, and it can be expressed as:

𝑃 = { ̇𝑥 | ̇𝑥 = 𝐽(𝑞) ̇𝑞, −1 ≤ ̇𝑞 ≤ 1} (2)

Figure 1. illustrates the difference between the manipulability ellipsoid and polytope for a
planar robot with two joints. The manipulability ellipsoid is an underestimation of the true
robot’s capacity, as it considers that the robot’s velocity limits have the shape of a sphere,
while in reality the robot’s velocity limits −1 ≤ ̇𝑞 ≤ 1 define a cube. The manipulability
polytope is a more accurate representation of the robot’s capacity, as it considers the true
shape of the robot’s velocity limits.

Figure 1: An example manipulability polytope and ellipsoid geometry for a planar 𝑚 = 2 robot with
𝑛 = 2. The difference between the joint space limits for ellipsoid described with || ̇𝑞||2 ≤ 1 (orange)
and the range limits −1 ≤ ̇𝑞 ≤ 1 (blue) is shown on the right. The difference in obtained achievable
task-space velocity ̇𝑥 polytope 𝑃 (blue) and ellipsoid 𝐸 (orange) is shown on the right plot. The plots
show that both in joint and task-space the ellipsoid metric is an underestimation of the true robot’s
capacity.

More generally, polytope based representations of different physical abilities present the exact
solution both for robots and for human musculoskeletal models, while ellipsoids present an
approximation. Figure 2. shows the difference between the force ellipsoid and polytope
(Chiacchio et al., 1996) for one configuration of the Franka Emika Panda robot.

Ellipsoids, however, are much more present in the literature, as their computation is much
faster than the computation of polytopes (Finotello et al., 1998).
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Evaluating ellipsoids
Evaluating ellipsoids is a computationally efficient task, as it can be done using the singular
value decomposition (SVD) (Yoshikawa, 1985). Ellipsoids can be fully defined using their
principal axis and principal axis lengths. Once they are known, the ellipsoid can be easily
visualized and used for further analysis.

pycapacity provides tools for evaluating several common ellipsoid metrics for robots and
humans, such as velocity (manipulability), force and acceleration, and it provides a set of tools
for their easy visualization.

Evaluating polytopes
Evaluating polytopes consists in finding either the minimal set of their vertices, 𝒱-
representation, or the minimal set of the half-planes defining their faces, ℋ-representation.
The 𝒱-representation is often used for visualization purposes, while the ℋ-representation is
often integrated in different optimization problems, as it can be represented as a set of linear
inequalities.

However, finding the 𝒱-representation or the ℋ-representation of a polytope is a computa-
tionally expensive task, relying on different vertex and facet enumeration algorithms (Fukuda,
2004). The computational complexity of these algorithms depends on the polytope formulation,
the dimensionality of the input (number of robot’s joints or human muscles) and output spaces
(1D, 2D, 3D or 6D Cartesian space) and the complexity of the polytope geometry (number of
vertices and faces).

Therefore, polytope evaluation is often a bottleneck in the computation of different physical
ability metrics, especially for human musculoskeletal models, which have a large number of
degrees of freedom and a large number of muscles. Furthermore, due to the inherent complexity
of the polytope evaluation algorithms, finding the appropriate algorithm for a given polytope
formulation and dimensionality of the input and output spaces is not a trivial task.

This package aims to provide a selection of algorithms for polytope evaluation, capable
of evaluating common physical ability polytopes in an easy to use and efficient way. These
algorithms are implemented in Python and can be used as standalone tools as well. Additionally,
the package provides tools for easy visualization the 2D and 3D polytopes.

Implemented physical capacity metrics
The package implements different physical ability metrics for robotic manipulators and humans
based on musculoskeletal models.

Robotic manipulators metrics
For robotic manipulators the package integrates several velocity, force and acceleration capacity
calculation functions based on ellipsoids and polytopes. A visual comparison of the force
polytope and ellipsoid, calculated using this package, is shown on Figure 2.
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Figure 2: 2D and 3D force polytopes and their ellipsoid counterparts for a 7 degrees of freedom (DOF)
Franka Emika Panda robot. Both polytopes and ellipsoids are calculated separately for the 3D and for
each of the 2D reduced task-space cases. Both polytopes and ellipsoids take in consideration the true
joint torque limits provided by the manufacturer. The underestimation of the true force capabilities of
the robot by ellipsoids appears clearly.

Ellipsoids

• Velocity (manipulability) ellipsoid 𝐸𝑣

𝐸𝑣 = { ̇𝑥 | ̇𝑥 = 𝐽 ̇𝑞, ||𝑊−1 ̇𝑞|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔( ̇𝑞𝑚𝑎𝑥) (3)

• Acceleration (dynamic manipulability) ellipsoid 𝐸𝑎

𝐸𝑎 = { ̈𝑥 | ̈𝑥 = 𝐽𝑀−1𝜏, ||𝑊−1𝜏|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔(𝜏𝑚𝑎𝑥) (4)

• Force ellipsoid 𝐸𝑓

𝐸𝑓 = {𝑓 |𝐽𝑇𝑓 = 𝜏, ||𝑊−1𝜏|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔(𝜏𝑚𝑎𝑥) (5)

In the above definitions, 𝐽 is the robot Jacobian matrix, 𝑀 is the inertia matrix, 𝑓 is the
vector of Cartesian forces, ̇𝑥 and ̈𝑥 are vectors fo Cartesian velocities and accelerations, 𝑞 is
the vector of joint positions, ̇𝑞 is the vector of the joint velocities and 𝜏 is the vector of joint
torques. Matrix 𝑊 is a scaling matrix that normalizes the joint space limits.

Polytopes

• Velocity polytope 𝑃𝑣

𝑃𝑣 = { ̇𝑥 | ̇𝑥 = 𝐽 ̇𝑞, ̇𝑞𝑚𝑖𝑛 ≤ ̇𝑞 ≤ ̇𝑞𝑚𝑎𝑥} (6)

• Acceleration polytope 𝑃𝑎

𝑃𝑎 = { ̈𝑥 | ̈𝑥 = 𝐽𝑀−1𝜏, 𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥} (7)

• Force polytope 𝑃𝑓
𝑃𝑓 = {𝑓 |𝐽𝑇𝑓 = 𝜏, 𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥} (8)

• Force polytopes Minkowski sum 𝑃⊕ and intersection 𝑃∩

𝑃∩ = 𝑃𝑓1 ∩ 𝑃𝑓1 𝑃⊕ = 𝑃𝑓1 ⊕ 𝑃𝑓1 (9)

Skuric et al. (2023). Pycapacity: a real-time task-space capacity calculation package for robotics and biomechanics. Journal of Open Source
Software, 8(89), 5670. https://doi.org/10.21105/joss.05670.

5

https://doi.org/10.21105/joss.05670


• Robot’s reachable space approximation in the desired horizon of interest Δ𝑡ℎ using the
convex polytope formulation 𝑃𝑥, described in the paper by (Skuric et al., 2023)

𝑃𝑥 = {Δ𝑥 | Δ𝑥 = 𝐽𝑀−1𝜏
Δ𝑡2ℎ
2

,

𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥,
̇𝑞𝑚𝑖𝑛 ≤ 𝑀−1𝜏Δ𝑡ℎ ≤ ̇𝑞𝑚𝑎𝑥,

𝑞𝑚𝑖𝑛 ≤ 𝑀−1𝜏
Δ𝑡2ℎ
2

≤ 𝑞𝑚𝑎𝑥}

(10)

In the above definitions, 𝐽 is the robot Jacobian matrix, 𝑀 is the inertia matrix, 𝑓 is the vector
of Cartesian forces, ̇𝑥 and ̈𝑥 are vectors fo Cartesian velocities and accelerations, 𝑞 is the vector
of joint positions, ̇𝑞 is the vector of the joint velocities and 𝜏 is the vector of joint torques.

Human musculoskeletal model metrics
For the human musculoskeletal models this package implements the polytope and ellipsoid
evaluation functions for the following metrics. A visual representation of the force polytope of
a musculoskeletal model, calculated using this package, is shown on Figure 3.

Figure 3: Cartesian force polytope of a musculoskeletal model of both human upper limbs with 7DOf
and 50 muscles each, visualized with biorbd. The polytopes are scaled with a ratio 1m : 1000N.

Ellipsoids

• Velocity (manipulability) ellipsoid 𝐸𝑣

𝐸𝑣 = { ̇𝑥 | 𝐽 ̇𝑞 = ̇𝑥, 𝐿 ̇𝑞 = ̇𝑙 ||𝑊−1 ̇𝑙|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔( ̇𝑙𝑚𝑎𝑥) (11)

• Acceleration (dynamic manipulability) ellipsoid 𝐸𝑎

𝐸𝑎 = { ̈𝑥 | ̈𝑥 = 𝐽𝑀−1𝑁𝐹, ||𝑊−1𝐹|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔(𝐹𝑚𝑎𝑥) (12)

• Force ellipsoid 𝐸𝑓

𝐸𝑓 = {𝑓 | 𝑁𝐹 = 𝐽𝑇𝑓, ||𝑊−1𝐹|| ≤ 1}, 𝑊 = 𝑑𝑖𝑎𝑔(𝐹𝑚𝑎𝑥) (13)

In the above definitions, 𝐽 is the robot Jacobian matrix, 𝑀 is the inertia matrix, 𝐿 si the
muscle length Jacobian matrix and 𝑁 = −𝐿𝑇 is the moment arm matrix. 𝑓 is the vector of
Cartesian forces, ̇𝑥 and ̈𝑥 are vectors fo Cartesian velocities and accelerations, 𝑞 is the vector
of joint positions, ̇𝑞 is the vector of the joint velocities and 𝜏 is the vector of joint torques, ̇𝑙 is
the vector of the muscle stretching velocities and 𝐹 is the vector of muscular forces. Matrix 𝑊
is a scaling matrix that normalizes the joint space limits.
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Polytopes

• Velocity polytope

𝑃𝑣 = { ̇𝑥 | ̇𝑙 = 𝐿 ̇𝑞, ̇𝑥 = 𝐽 ̇𝑞, ̇𝑞𝑚𝑖𝑛, ≤ ̇𝑞 ≤ ̇𝑞𝑚𝑎𝑥, ̇𝑙𝑚𝑖𝑛 ≤ ̇𝑙 ≤ ̇𝑙𝑚𝑎𝑥} (14)

• Acceleration polytope

𝑃𝑎 = { ̈𝑥 | ̈𝑥 = 𝐽𝑀−1𝑁𝐹, 𝐹𝑚𝑖𝑛 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥} (15)

• Force polytope

𝑃𝑓 = {𝑓 | 𝐽𝑇𝑓 = 𝑁𝐹, 𝐹𝑚𝑖𝑛 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥} (16)

In the above definitions, 𝐽 is the robot Jacobian matrix, 𝑀 is the inertia matrix, 𝐿 si the
muscle length Jacobian matrix and 𝑁 = −𝐿𝑇 is the moment arm matrix. 𝑓 is the vector of
Cartesian forces, ̇𝑥 and ̈𝑥 are vectors fo Cartesian velocities and accelerations, 𝑞 is the vector
of joint positions, ̇𝑞 is the vector of the joint velocities and 𝜏 is the vector of joint torques, ̇𝑙 is
the vector of the muscle stretching velocities and 𝐹 is the vector of muscular forces.

Implemented polytope evaluation algorithms
This package implements several algorithms for polytope evaluation

• Hyper-Plane Shifting Method (HPSM)
• Vertex Enumeration Algorithm (VEPOLI2)
• Iterative Convex Hull Method (ICHM)

These algorithms are all implemented in Python and used to evaluate different polytope based
physical ability metrics. Additionally, the algorithms are available to the users to be used
standalone as well.

Hyper-plane shifting method (HPSM)
This is an algorithm based on the paper by (Gouttefarde & Krut, 2010) which presents an
efficient way of determining the minimal half-space ℋ representation of the polytope described
by the equation

𝑃 = {𝑥 | 𝑥 = 𝐵𝑦, 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥} (17)

Vertex enumeration algorithm (VEPOLI2)
This is an algorithm based on the paper by (Skuric et al., 2021) which describes an efficient
method for finding vertex 𝒱 representation of the polytope described by the equation

𝑃 = {𝑥 | 𝐴𝑥 = 𝑦, 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥} (18)

Iterative convex-hull method (ICHM)
This is an algorithm described in the paper by (Skuric et al., 2022) which implements an
efficient method which iteratively approximates the polytope

𝑃 = {𝑥 | 𝐴𝑥 = 𝐵𝑦, 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥} (19)
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The method finds both vertex 𝒱 and half-plane ℋ representation of the polytope at the same
time.

It can be additionally extended to the case where there is an additional projection matrix 𝑃
making a class of problems:

𝑃 = {𝑥 | 𝑥 = 𝑃𝑧,𝐴𝑧 = 𝐵𝑦, 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥} (20)

Performance evaluation of polytope metrics
The applicable methods to evaluate different polytope based metrics depend on the family
of problems they correspond to. Therefore this section brings the information about which
algorithm is used for which polytope metric and provides a brief performance evaluation of
their execution times.

Additionally, to give brief information about the efficiency of the proposed methods, the section
provides the execution times of the methods for the example problems. However, as these
execution times can vary significantly depending on the complexity of the model used and
the hardware it is run on, the users are encouraged to run the benchmark scripts themselves
to get the most accurate results. This package provides several benchmarking scripts in the
examples folder.

Robotic manipulators

In case of robotic manipulators the methods used are given in the following table.

Polytope Metric Algorithm Problem type
Execution time [ms]
mean ± std. (max)

Velocity HPSM 𝑥 = 𝐵𝑦, 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] 3.6 ± 0.21 (5.7)
Acceleration HPSM 𝑥 = 𝐵𝑦, 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] 6.6 ± 1.4 (14.2)
Force VEPOLI2 𝐴𝑥 = 𝑏, 𝑏 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] 6.8 ± 0.88 (16.4)
Force intersection VEPOLI2 𝐴𝑥 = 𝑏, 𝑏 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] 98.2 ± 29.33 (165.8)
Force sum VEPOLI2 𝐴𝑥 = 𝑏, 𝑏 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] 17.1 ± 3.4 (44.9)
Reachable space ICHM 𝑥 = 𝐵𝑦, 𝑦 ∈ 𝑃𝑦 30.5 ± 6.6 (76.7)

The average execution time is calculated for 1000 random configuration of a 7 DOF Franka
Emika panda robot, the model was used with pinocchio software. All the experiments are run
on a computer equipped with a 1.90GHz Intel i7-8650U processor. The results are obtained
using the benchmarking script provided in the by the repository in the examples folder.

Musculoskeletal models

In case of human musculoskeletal models the methods used are given in the table below.

Polytope
Metric Algorithm Problem type

Execution time [ms]
mean ± std. (max)

Force ICHM 𝐴𝑥 = 𝐵𝑦, 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] 186.8 ± 45.6 (281.6)
Acceleration HPSM or ICHM 𝑥 = 𝐵𝑦, 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] 378.8 ± 62.3 (643.7)
Velocity ICHM 𝑥 = 𝐵𝑦, 𝑦 ∈ 𝑃𝑦 223.1 ± 60.4 (389.1)

The average execution time is calculated for 1000 random configuration of a 50 muscle 7 DOF
musculoskeletal model introduced by (Holzbaur et al., 2005), the model was used with biorbd

biomechanics software. The experiments are run on a computer equipped with a 1.90GHz Intel

Skuric et al. (2023). Pycapacity: a real-time task-space capacity calculation package for robotics and biomechanics. Journal of Open Source
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i7-8650U processor. The results are obtained using the benchmarking script provided in the by
the repository in the examples folder.

Conclusion
This paper introduces the pycapacity Python package, a toolkit designed to evaluate task-
space physical ability metrics for both humans and robots based on polytopes and ellipsoids.
The aim of this package is to provide efficient tools for evaluating these metrics within an easily
accessible framework, which can seamlessly integrate with standard robotics and biomechanics
libraries. By implementing state-of-the-art algorithms for polytope evaluation, pycapacity
enables the evaluation of these metrics in an efficient manner, making them applicable for
interactive online applications.
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