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Summary
The progress of a machine learning field is both tracked and propelled through the development
of robust benchmarks. While significant progress has been made to create standardized, easy-
to-use benchmarks for molecular discovery e.g., (Brown et al., 2019), this remains a challenge
for solid-state material discovery (Alverson et al., 2024; Xie et al., 2022; Zhao et al., 2023). To
address this limitation, we propose matbench-genmetrics, an open-source Python library for
benchmarking generative models for crystal structures. We use four evaluation metrics inspired
by Guacamol (Brown et al., 2019) and Crystal Diffusion Variational AutoEncoder (CDVAE) (Xie
et al., 2022)—validity, coverage, novelty, and uniqueness—to assess performance on Materials
Project data splits using timeline-based cross-validation. We believe that matbench-genmetrics
will provide the standardization and convenience required for rigorous benchmarking of crystal
structure generative models. A visual overview of the matbench-genmetrics library is provided
in Figure 1.
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Figure 1: Summary visualization of matbench-genmetrics to evaluate crystal generative model per-
formance using validity, coverage, novelty, and uniqueness metrics based on calendar-time splits of
experimentally determined Materials Project database entries. Validity is the comparison of dis-
tribution characteristics (space group number) between the generated materials and the training
and test sets. Coverage is the number of matches between the generated structures and a held-
out test set. Novelty is a comparison between the generated and training structures. Finally,
uniqueness is a measure of the number of repeats within the generated structures (i.e., compar-
ing the set of generated structures to itself). For in-depth descriptions and equations for the four
metrics described above, see https://matbench-genmetrics.readthedocs.io/en/latest/readme.html and
https://matbench-genmetrics.readthedocs.io/en/latest/metrics.html.

Statement of need
In the field of materials informatics, where materials science intersects with machine learning,
benchmarks play a crucial role in assessing model performance and enabling fair comparisons
among various tools and models. Typically, these benchmarks focus on evaluating the accuracy
of predictive models for materials properties, utilizing well-established metrics such as mean
absolute error and root-mean-square error to measure performance against actual measurements.
A standard practice involves splitting the data into two parts, with one serving as training
data for model development and the other as test data for assessing performance (Dunn et al.,
2020).

However, benchmarking generative models, which aim to create entirely new data rather than
focusing solely on predictive accuracy, presents unique challenges. While significant progress has
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been made in standardizing benchmarks for tasks like image generation and molecule synthesis,
the field of crystal structure generative modeling lacks this level of standardization (this is
separate from machine learning interatomic potentials, which have the robust and comprehensive
matbench-discovery (Riebesell et al., 2024) and Jarvis Leaderboard benchmarking frameworks
(Choudhary et al., 2024)). Molecular generative modeling benefits from widely adopted
benchmark platforms such as Guacamol (Brown et al., 2019) and Moses (Polykovskiy et al.,
2020), which offer easy installation, usage guidelines, and leaderboards for tracking progress.
In contrast, existing evaluations in crystal structure generative modeling, as seen in CDVAE
(Xie et al., 2022), FTCP (Ren et al., 2022), PGCGM (Zhao et al., 2023), CubicGAN (Zhao
et al., 2021), and CrysTens (Alverson et al., 2024), lack standardization, pose challenges in
terms of installation and application to new models and datasets, and lack publicly accessible
leaderboards. While these evaluations are valuable within their respective scopes, there is a
clear need for a dedicated benchmarking platform to promote standardization and facilitate
robust comparisons.

In this work, we introduce matbench-genmetrics, a materials benchmarking platform for crystal
structure generative models. We use concepts from molecular generative modeling benchmark-
ing to create a set of evaluation metrics—validity, coverage, novelty, and uniqueness—which
are broadly defined as follows:

• Validity: a measure of how well the generated materials match the distribution of the
training dataset

• Coverage: the ability to successfully predict known materials which have been held out
• Novelty: generating structures which are close matches to examples in the training set

are penalized
• Uniqueness: the number of repeats within the generated structures

matbench-genmetrics is comprised of two namespace packages. The first namespace package
is matbench_genmetrics.core, which provides the following features:

• GenMatcher: A class for calculating matches between two sets of structures
• GenMetrics: A class for calculating validity, coverage, novelty, and uniqueness metrics
• MPTSMetrics: class for loading mp_time_split data, calculating time-series cross-

validation metrics, and saving results
• Fixed benchmark classes for 10, 100, 1000, and 10000 generated structures

Additionally, we introduce the matbench_genmetrics.mp_time_split namespace package as
a complement to matbench_genmetrics.core. It provides a standardized dataset and cross-
validation splits for evaluating the mentioned four metrics. Time-based splits have been utilized
in materials informatics model validation, such as predicting future thermoelectric materials
via word embeddings (Tshitoyan et al., 2019), searching for efficient solar photoabsorption
materials through multi-fidelity optimization (Palizhati et al., 2022), and predicting future
materials stability trends via network models (Aykol et al., 2019). Recently, Hu et al. (Zhao
et al., 2023) used what they call a rediscovery metric, referred to here as a coverage metric
in line with molecular benchmarking terminology, to evaluate crystal structure generative
models. While time-series splitting wasn’t used, they showed that after generating millions of
structures, only a small percentage of held-out structures had matches. These results highlight
the difficulty (and robustness) of coverage tasks. By leveraging timeline metadata from the
Materials Project database (Jain et al., 2013) and creating a standard time-series splitting of
data, matbench_genmetrics.mp_time_split enables rigorous evaluation of future discovery
performance.

The matbench_genmetrics.mp_time_split namespace package provides the following features:

• downloading and storing snapshots of Materials Project crystal structures via pymatgen

(Ong et al., 2013)
• modification of pymatgen search criteria to fetch custom datasets
• utilities for post-processing Materials Project entries
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• convenience methods to access the snapshot dataset
• predefined scikit-learn TimeSeriesSplit cross-validation splits (Ong et al., 2013)

In future work, metrics will serve as multi-criteria filters to prevent manipulation. Stand-
alone metrics can be “hacked” by generating nonsensical structures for novelty or including
training structures to inflate validity scores. To address this, multiple criteria are considered
simultaneously for each generated structure, such as novelty, uniqueness, and filtering rules
like non-overlapping atoms, stoichiometry, or checkCIF criteria (Spek, 2020). Additional
filters based on machine learning models can be applied for properties like negative formation
energy, energy above hull, ICSD classification, and coordination number. Applying machine-
learning-based structural relaxation using M3GNet (Chen & Ong, 2022) (e.g., as in CrysTens
(Alverson et al., 2024)) before filtering is also of interest. Contributions related to multi-criteria
filtering, enhanced validity filters, and implementing a benchmark submission system and public
leaderboard are welcome.

We believe that the matbench-genmetrics ecosystem is a robust and easy-to-use benchmarking
platform that will help propel novel materials discovery and targeted crystal structure inverse
design. We hope that practitioners of crystal structure generative modeling will adopt matbench-
genmetrics, contribute improvements and ideas, and submit their results to the planned public
leaderboard.
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