
Biotrade: A Python package to access and analyse the
international trade of bio-based products
Paul Rougieux 1¶, Selene Patani 2, and Mirco Migliavacca 1

1 European Commission, Joint Research Centre, Ispra, Italy 2 JRC Consultant, ARCADIA SIT s.r.l.,
Vigevano (PV), Italy ¶ Corresponding author

DOI: 10.21105/joss.05550

Software
• Review
• Repository
• Archive

Editor: Martin Fleischmann
Reviewers:

• @FATelarico
• @potterzot

Submitted: 28 April 2023
Published: 05 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The aim of the biotrade package is to enable regular updates of agriculture, fisheries and
forest products trade data from the international data sources of FAOSTAT (2023) and UN
Comtrade (2023). The software provides methods to join data across sources as well as to
aggregate and rank the most important products and the most important countries, as well as
geographical areas (e.g. continents). It also provides tools to assess the quality of the data, by
comparing for example mirror flows or unit prices of trade. The package allows to store and
update the collection of macroeconomic time series from the World Bank (2023).

Statement of need
The production of bio-commodities, agricultural and forest products, and international trade of
these products is receiving increasingly attention because of their potential impacts in terms of
land use change, and embodied green-house-gas emissions (Pendrill et al., 2022). Disciplines
such as environmental economics or Life Cycle Analysis are concerned with research questions
such as: (1) what is the ecological footprint of bio-commodity production and international
trade? or (2) how do agricultural market prices react to natural disasters? To analyse these
questions on a global scale, researchers use models based on time series of commodities
production and trade with data covering many countries and many years in a panel format.
Every month, or a few times per year, countries update their data in a centralised way through
international organisations such as the United Nations (UN) Food and Agriculture Organisation
(FAO) or the UN Comtrade. This data is made available in the form of files on a public website
from which they can be downloaded. In order to regularly monitor these datasets, dedicated
open-source tools can help download data into statistical programming software such as Julia,
Matlab, Python, R or SAS. The availability of these tools make it possible for practitioners
and scientists to quickly access the data, to re-run an analysis, update the data with the latest
release quickly, generate plots and model outputs when new data become available in a time
series. Thus, they facilitate reproducible research and the activities of stakeholders. Such
download tools to access and download data exist already in the R and python packaging
ecosystems. The R package FAOSTAT (Kao et al., 2017) can download and prepare FAOSTAT
data. The R package WDI (Arel-Bundock & Bacher, 2022) downloads data from the World
Bank including the World Development Indicators. The python package eurostat (Cazzaniga,
2022) can download Eurostat data, so does the R package eurostat (Lahti et al., 2017).

However, there is no package that can download from all these sources under a common
naming scheme. Also, all these packages only load data frames and leave it up to the user to
save their data for later. Here we present the biotrade package, an open-source package that
allows for downloading production, land use, and trade dataset from FAOSTAT, and trade
data from the UN Comtrade.

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

1

https://orcid.org/0000-0001-9073-9826
https://orcid.org/0000-0001-8601-3336
https://orcid.org/0000-0003-3546-8407
https://doi.org/10.21105/joss.05550
https://github.com/openjournals/joss-reviews/issues/5550
https://gitlab.com/bioeconomy/forobs/biotrade/
https://doi.org/10.5281/zenodo.8406069
https://martinfleischmann.net
https://orcid.org/0000-0003-3319-3366
https://github.com/FATelarico
https://github.com/potterzot
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05550

Unlike the tools already available, the biotrade package creates a local copy inside a database
that can be easily accessible for further calculations. Moreover, the biotrade package
harmonises variable names across data sources. Finally, it provides a series of methods to assess
the quality of the data, and for the calculations of statistics and temporal and geographical
aggregation of the data, ranking the countries with more production or trades of a specific
products, among others.

In the following sections we describe: 1) the structure of the package and associated database
2) methods for calculations, aggregation and comparison of production and trade data.

Data update and package structure
Thanks to the SQL Alchemy (Bayer, 2012) abstraction layer biotrade can use different
database engines. The data is cached in a local database which can be either an SQLite
database (the default) or a PostGreSQL database (user defined through an environment
variable). Database tables are structured with unique constraints to ensure that there is no
duplication when data is updated.

The package is structured by data sources. Each source has a series of methods to download
and aggregate data. Some functions that perform comparison and data aggregation are
common to all data sources.

The following python code updates crop production data by downloading it from the FAOSTAT
API:

from biotrade.faostat import faostat

faostat.pump.update(["crop_production"])

The following code loads sawnwood other Harmonized System (HS) code 440799 and soya
beans (HS code 120190) trade reported by Italy (reporter code 381) in 2020 from the Comtrade
API:

from biotrade.comtrade import comtrade

sawnwood99_it = comtrade.pump.download_df(cc = "440799", r="381", ps="2020")

soya_beans_it = comtrade.pump.download_df(cc = "120190", r="381", ps="2020")

Variable names are harmonized across data sources. The benefit is that python or R code
become more readable when moving from one data source to another, as well as that comparison
between data sources are straightforward. The table section shows the naming convention
and some of the variable names used across different sources.

biotrade comtrade faostat production faostat trade world_bank
year year year year year
reporter reporter area reporter_countries coun-

try_name
partner partner partner_countries
prod-
uct_code

commod-
ity_code

item_code item_code

One issue when working with UN Comtrade and FAOSTAT data, is that country codes are
different between the two sources. The package contains a mapping table between country
codes in the 2 coding system, as well as ISO codes and continent and sub-continent aggregates.
In addition the UN Comtrade product classification is vastly larger than the FAOSTAT product
classification. The biotrade package also contains a mapping table between FAOSTAT product
codes and the Harmonized System classification used in Comtrade. The country and product
mapping tables make it possible to convert UN comtrade data into the FAOSTAT format,

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

2

https://doi.org/10.21105/joss.05550

so that it can be analysed in the same way. Aggregation functions are also based on these
country and product mapping tables.

Methods for calculations, aggregation and comparison of produc-
tion and trade data
Example use of the nlargest function to display the 3 largest wheat producers globally:

from biotrade.faostat import faostat

from biotrade.common.aggregate import nlargest

wheat = faostat.db.select("crop_production", product="wheat")

wheat_largest = nlargest(

Remove aggregates (continents) and keep only recent years

wheat.query("reporter_code < 1000 and year > year.max() - 10"),

value_vars="value",

agg_groups=["reporter", "product"],

slice_groups=["element", "unit"],

n=5

)

wheat_largest

product element reporter unit value

0 wheat area_harvested India ha 30205021.0

1 wheat area_harvested Russian Federation ha 25698803.1

2 wheat area_harvested China ha 24189501.9

3 wheat area_harvested China, mainland ha 24187166.0

4 wheat area_harvested United States of America ha 17344652.9

5 wheat production China tonnes 128605992.0

6 wheat production China, mainland tonnes 128600610.0

7 wheat production India tonnes 95949997.0

8 wheat production Russian Federation tonnes 65938100.0

9 wheat production United States of America tonnes 54897588.9

10 wheat yield Ireland hg/ha 91991.6

11 wheat yield New Zealand hg/ha 89421.0

12 wheat yield Belgium hg/ha 87399.3

13 wheat yield Netherlands hg/ha 87030.2

14 wheat yield United Kingdom of Great... hg/ha 79164.2

The biotrade package can also be used from the R statistical software, thanks to an interface
with python called reticulate (Ushey et al., 2023). Example loading FAOSTAT crop production
data from within R and ranking countries with the nlargest function. Rows are aggregated
by agg_groups, sorted by the first of the value_vars and slicing takes the first 5 rows in each
slice group:

This is the only R code example in this document

library(reticulate)

library(dplyr)

py_run_string("from biotrade.faostat import faostat")

py_run_string("from biotrade.common.aggregate import nlargest")

wheat <- py$faostat$db$select("crop_production", product="wheat")

wheat_largest <- wheat %>%

Remove aggregates (continents) and keep only recent years

filter(reporter_code < 1000 & year > max(year) - 10) %>%

py$nlargest(value_vars="value",

agg_groups=c("reporter", "product"),

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

3

https://doi.org/10.21105/joss.05550

slice_groups=c("element", "unit"),

n=5)

str(wheat_largest)

'data.frame': 15 obs. of 5 variables:

$ product : chr "wheat" "wheat" "wheat" "wheat" ...

$ unit : chr "ha" "ha" "ha" "ha" ...

$ element : chr "area_harvested" "area_harvested" "area_harvested" ...

$ reporter: chr "India" "Russian Federation" "China" "China, mainland" ...

$ value : num 30205021 25698803 24189502 24187166 17344653 ...

- attr(*, "pandas.index")=RangeIndex(start=0, stop=15, step=1)

The following code maps Comtrade to Faostat product codes with the function
merge_faostat_comtrade to compare trades of the two data sources.

from biotrade.common.compare import merge_faostat_comtrade

import matplotlib.pyplot as plt

df = merge_faostat_comtrade(

faostat_table="crop_trade", comtrade_table="yearly", faostat_code=[656]

)

df = df[

(df.reporter == "Colombia")

& (df.partner == "Italy")

& (df.element == "export_quantity")

& (df.year > 2010)

]

df_pivot = df.pivot(

index=["reporter", "year", "partner"], columns="source", values="value"

)

fig, ax = plt.subplots()

ax.axline(

[ax.get_xlim()[0], ax.get_ylim()[0]],

[ax.get_xlim()[1], ax.get_ylim()[1]],

color="r",

)

ax.scatter(df_pivot.faostat / 1000, df_pivot.comtrade / 1000)

plt.xlabel("Faostat [tonnes]")

plt.ylabel("Comtrade [tonnes]")

plt.title("Export quantity of coffee green from Colombia to Italy")

plt.show()

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

4

https://doi.org/10.21105/joss.05550

Figure 1: Figure 1

Aggregate bilateral trade data to 27 European Member States and rest of the World as reporter
or partners through agg_trade_eu_row function.

from biotrade.common.aggregate import agg_trade_eu_row

from biotrade.faostat import faostat

palm_oil = faostat.db.select(

table="crop_trade",

product="palm_oil",

reporter="Indonesia",

element="export_quantity",

period_start=2018,

)

palm_oil_agg = agg_trade_eu_row(palm_oil, grouping_side="partner")

selected_columns = ["reporter", "partner", "product", "element"]

selected_columns += ["year", "unit", "value"]

print(palm_oil_agg[selected_columns])

reporter partner product element year unit value

0 Indonesia eu palm_oil export_quantity 2018 tonnes 3707358.77

1 Indonesia eu palm_oil export_quantity 2019 tonnes 3402457.71

2 Indonesia eu palm_oil export_quantity 2020 tonnes 3326492.32

3 Indonesia eu palm_oil export_quantity 2021 tonnes 2815188.47

4 Indonesia row palm_oil export_quantity 2018 tonnes 24186229.87

5 Indonesia row palm_oil export_quantity 2019 tonnes 24086164.86

6 Indonesia row palm_oil export_quantity 2020 tonnes 22610175.02

7 Indonesia row palm_oil export_quantity 2021 tonnes 22716583.50

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

5

https://doi.org/10.21105/joss.05550

Compare flows through put_mirror_beside function, which adds a column to the dataframe
with the corresponding mirror flows.

from biotrade.common.compare import merge_faostat_comtrade

from biotrade.faostat.mirror import put_mirror_beside

df = merge_faostat_comtrade(

faostat_table="crop_trade", comtrade_table="yearly", faostat_code=[236]

)

df = df[

(df.reporter.isin(["Brazil", "Argentina"]))

& (df.partner.isin(["Brazil", "Argentina"]))

& (df.year == 2021)

& (df.element.isin(["import_quantity", "export_quantity"]))

]

df = put_mirror_beside(df)

selected_columns = ["source", "reporter", "partner"]

selected_columns += ["element", "year", "unit", "value", "value_mirror"]

print(df[selected_columns])

source reporter partner element year unit value value_mirror

faostat Brazil Argentina import 2021 kg 4840840.0 2499580.0

faostat Brazil Argentina export 2021 kg 218176100.0 218176890.0

faostat Argentina Brazil import 2021 kg 218176890.0 218176100.0

faostat Argentina Brazil export 2021 kg 2499580.0 4840840.0

comtrade Argentina Argentina import 2021 kg 689204.0 NaN

comtrade Argentina Brazil export 2021 kg 2499580.0 4840836.0

comtrade Argentina Brazil import 2021 kg 218176890.0 218176103.0

comtrade Brazil Argentina export 2021 kg 218176103.0 218176890.0

comtrade Brazil Argentina import 2021 kg 4840836.0 2499580.0

Conclusion
The biotrade package is a preparation tool that updates agriculture and forestry production
and trade data based on global sources. It enforces a naming convention on variables to make
sure similar variable names are used across data sources. As source Application Programming
Interfaces (API) tend to change their access mechanisms every few years; the goal of the
package maintainers is to abstract away those changes and provide a unified method to update
data, that should continue to work with future updates. The package provides convenient
methods to store intermediate results and to select data. We encourage users to install the
biotrade package, to test it and to send feedback through the issues page. We believe that
the package will be of interest of scientist, stakeholders, or practitioners that are interested in
monitoring production, land use and trade data.

References
Arel-Bundock, V., & Bacher, E. (2022). WDI: World Development Indicators and Other World

Bank Data. https://CRAN.R-project.org/package=WDI

Bayer, M. (2012). SQLAlchemy. In A. Brown & G. Wilson (Eds.), The Architecture of
Open Source Applications Volume II: Structure, Scale, and a Few More Fearless Hacks.
aosabook.org. http://aosabook.org/en/sqlalchemy.html

Cazzaniga, N. (2022). Eurostat Python Package. https://pypi.org/project/eurostat/

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

6

https://gitlab.com/bioeconomy/forobs/biotrade/-/issues
https://CRAN.R-project.org/package=WDI
http://aosabook.org/en/sqlalchemy.html
https://pypi.org/project/eurostat/
https://doi.org/10.21105/joss.05550

FAOSTAT. (2023). Food and Agriculture Organization of the United Nations. http://www.
fao.org/faostat/

Kao, M. C. J., Gesmann, M., & Gheri, F. (2017). FAOSTAT: Download Data from the
FAOSTAT Database. CRAN. https://CRAN.R-project.org/package=FAOSTAT

Lahti, L., Huovari, J., Kainu, M., & Biecek, P. (2017). Retrieval and Analysis of Eurostat
Open Data with the eurostat Package. The R Journal, 9(1), 385–392. https://doi.org/10.
32614/RJ-2017-019

Pendrill, F., Gardner, T. A., Meyfroidt, P., Persson, U. M., Adams, J., Azevedo, T., Bastos
Lima, M. G., Baumann, M., Curtis, P. G., De Sy, V., & others. (2022). Disentangling the
numbers behind agriculture-driven tropical deforestation. Science, 377 (6611), eabm9267.
https://doi.org/10.1126/science.abm9267

The World Bank. (2023). World Development Indicators. https://datacatalog.worldbank.org/
search/dataset/0037712/World-Development-Indicators

United Nations Statistics Division. (2023). The United Nations Comtrade database. https:
//comtrade.un.org/data/da

Ushey, K., Allaire, J., & Tang, Y. (2023). reticulate: Interface to ’Python’. https://rstudio.
github.io/reticulate/

Rougieux et al. (2023). Biotrade: A Python package to access and analyse the international trade of bio-based products. Journal of Open Source
Software, 8(90), 5550. https://doi.org/10.21105/joss.05550.

7

http://www.fao.org/faostat/
http://www.fao.org/faostat/
https://CRAN.R-project.org/package=FAOSTAT
https://doi.org/10.32614/RJ-2017-019
https://doi.org/10.32614/RJ-2017-019
https://doi.org/10.1126/science.abm9267
https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
https://comtrade.un.org/data/da
https://comtrade.un.org/data/da
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://doi.org/10.21105/joss.05550

	Summary
	Statement of need
	Data update and package structure
	Methods for calculations, aggregation and comparison of production and trade data
	Conclusion
	References

