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Summary
We present the GPCERF R package, which employs a novel Bayesian approach based on
Gaussian Process (GP) to estimate the causal exposure-response function (CERF) for continuous
exposures, along with associated uncertainties. R packages that target causal effects under
a binary exposure setting exist (e.g., Ho et al., 2011), as well as in the continuous exposure
setting (e.g., Khoshnevis et al., 2023). However, they often rely on a separate resampling stage
to quantify uncertainty of the estimates. GPCERF provides a two-step end-to-end solution
for causal inference with continuous exposures that is equipped with automatic and efficient
uncertainty quantification. During the first step (the design phase), the algorithm searches for
optimal hyperparameters (using the exposures and covariates) that achieve optimal covariate
balance in the induced pseudo-population, i.e., that the correlation between the exposure and
each covariate is close to zero. The selected hyperparameters are then used in the second
step (the analysis phase) to estimate the CERF on the balanced data set and its associated
uncertainty using two different types of GPs: a standard GP and a nearest-neighbor GP (nnGP).
The standard GP offers high accuracy in estimating CERF but is also computationally intensive.
The nnGP is a computationally efficient approximation of the standard GP and is well-suited
for the analysis of large-scale datasets.

Statement of need
In the GPCERF R package we have introduced a novel Bayesian approach. This method
utilizes Gaussian Processes (GPs) as a prior for counterfactual outcome surfaces, offering a
flexible way to estimate the CERF with automatic uncertainty quantification. Additionally,
it can incorporate prior information about the level of smoothness of the underlying causal
ERF through specifically designed covariance functions. Popular R packages for estimating
causal ERF, such as CausalGPS (Khoshnevis et al., 2023; Wu et al., 2022), ipw (van der
Wal & Geskus, 2011), npcausal (Kennedy, 2020) and CBPS (Fong et al., 2018, 2022; Imai &
Ratkovic, 2013), are primarily built on frequentist frameworks. To the best of the authors’
knowledge, however, Bayesian nonparametric alternatives are relatively scarce. causaldrf
(Galagate & Schafer, 2022) uses Bayesian Additive Regression Trees (BART) for flexible
causal ERF estimation. BCEE (Talbot et al., 2015, 2023; Talbot & Beaudoin, 2022) applies
a Bayesian model averaging approach for causal ERF estimation. bkmr (Bobb et al., 2014;
Bobb, 2022) employs a kernel-based Bayesian model, which is equivalent to a GP prior, to
estimate the effect of multivariate exposure on the outcome of interest. However, since it does
not explicitly address confounding in the observational data, the resulting estimate does not
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have causal interpretation.

While various R packages, like GauPro (Erickson, 2023), mlegp (Dancik, 2022), and GPfit
(MacDoanld et al., 2019; MacDonald et al., 2015), offer Gaussian process regression capabilities,
we chose not to use them. The primary reason is that these packages rely on traditional
techniques for hyper parameter tuning, such as sampling from the hyper-parameters’ posterior
distributions or maximizing the marginal likelihood function. Our approach, in contrast, aims to
achieve optimal covariate balancing. By utilizing the posterior distributions of model parameters,
we can automatically assess the uncertainty in our CERF estimates (for further details, see Ren
et al., 2021). Since standard GPs are infamous for their scalability issues—particularly due to
operations involving the inversion of covariance matrices—we adopt a nearest-neighbor GP
(nnGP) (Abhirup Datta & Gelfand, 2016) prior to ensure computationally efficient inference of
the CERF in large-scale datasets. The Performance analyses of standard and nearest neighbor
GP models section presents comparisons of the wall clock times between standard GP and
nnGP.

Overview
In the context of causal inference for continuous exposures, one of the important targets for
inference is the so-called casual exposure response function (CERF), which is defined as the
expectation of the counterfactual outcomes over the observed covariates at a range of exposure
levels in a given population. If we denote the counterfactual outcome at exposure level 𝑤 by
𝑌 (𝑤), CERF is indeed the function 𝑅(𝑤) = 𝔼(𝑌 (𝑤)) defined on a set of 𝑤 of interest. One
should be careful when estimating CERF from observational data, which usually contain not
only the outcome 𝑌 and exposure 𝑊, but also potential confounders 𝐶. The main reason is
that if we do not adjust for the confounders 𝐶 properly, this may lead to biased estimation of
𝑅(𝑤). We choose to follow the approach in Hirano & Imbens (2004), which is based on the
generalized propensity score (GPS) to adjust for confounding. GPS, denoted by 𝑠(𝑊,𝐶), is
defined as the conditional density of 𝑊 given 𝐶. It has been shown that one can obtain an
unbiased estimator of the causal effect of 𝑊 provided the conditional distribution of 𝑌 given
𝑊 and 𝑠(𝑊,𝐶) is known (Hirano & Imbens, 2004).

In the GPCERF package, we use a Gaussian process (GP) prior for the conditional distribution
of 𝑌 given 𝑊 and 𝑠(𝑊,𝐶). This model implicitly performs non-parametric regression of 𝑌 on
𝑊 and 𝑠(𝑊,𝐶), and thus we can recover 𝑝(𝑌 |𝑊, 𝑠(𝑊,𝐶)) with high accuracy. We then
estimate 𝐸(𝑌 (𝑤)) using the posterior means of 𝑌 at different 𝑊 and 𝐶. See Ren et al. (2021)
for more details. We assume that the kernel function of the GP is

𝑘((𝑤, 𝑐), (𝑤′, 𝑐′)) = 𝛾2ℎ(√(𝑠(𝑤, 𝑐) − (𝑠(𝑤′, 𝑐′))2
𝛼

+ (𝑤 − 𝑤′)2
𝛽

),

where ℎ ∶ [0,∞) → [0, 1] is a non-increasing function; and 𝛼 and 𝛽 define the relative
importance of GPS and exposure values, respectively. 𝛾 indicates the scale of the GP. We call
the collection (ℎ, 𝛼, 𝛽, 𝛾) the hyper-parameters of the GP.

The primary goal in GPCERF is to find appropriate values for the hyper-parameters. In the
context of causal inference, ‘’appropriate’’ values of the hyper-parameters are those that make
the estimator of CERF as if it is generated from a study with randomized design. To be
more concrete, note that the GP estimates 𝑅(𝑤) by creating a pseudo-population that is a
weighted version of the original dataset (see more details in Ren et al., 2021). The weight
for each sample in the original dataset is a function of the hyperparameters. By tuning the
hyperparameters, we can minimize the sample correlations between 𝑊 and each component of
𝐶 in this pseudo-population, rendering the pseudo-population to be more balanced on these
covariates 𝐶. In practice, we minimize the covariate balance, which is a summary of the sample
correlations between 𝑊 and each of 𝐶 to tune our hyper-parameters. Covariate balance is
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computed by assessing the correlation between 𝑊 and 𝐶 in the pseudo-population using the
wCorr R package (Bailey & Emad, 2023).

Both GP and nnGP approaches involve two primary steps - tuning and estimation. GPCERF
conducts a grid search on the range of provided 𝛼, 𝛽, and 𝛾/𝜎. The kernel function is also
selected if the user provides multiple candidates. During the tuning step, covariate balance is
minimized by choosing the optimal hyperparameters.

The scaling parameter 𝛼 and 𝛽 determine how much information the estimation will draw
from the two coordinates: GPS score (𝑠(𝑊,𝑋)) and exposure level (𝑊). A large scaling
parameter suggests that varying the corresponding coordinates is only associated with a minor
change in the outcome, that is, this coordinate does not contribute too much to the variation
of the outcome. The signal-to-noise ratio parameter 𝛾/𝜎 encodes how different observed data
is from pure noise. A large 𝛾/𝜎 indicates strong associations between the outcome and the
coordinates of GP while a small 𝛾/𝜎 suggests the observed outcome is likely to be drawn
from a random process that is independent of the coordinates. In the setting of observational
studies and under the no unobserved confounding assumption, which GPCERF is specifically
designed for, both the exposure level and the GPS score encode important information for the
estimation of CERF. As a result, the range of their scaling parameter should be comparable
and the covariate balance will determine which coordinate is more important (smaller scaling
factor). The range should also cover both ends of the importance from extremely important
to nearly irrelevant. We choose to achieve this by considering the range on the 𝑙𝑜𝑔10 scale
with equally spaced candidate values. The range of 𝛾/𝜎 also follows the same strategy when
the prior belief about the strength of causal effect of the exposure is weak.

In the estimation step, the optimal parameters are used to estimate the posterior mean and
standard deviation of 𝑅(𝑤) at a set of exposure values of interest. The outcome data is not
used during the tuning step, separating the design and analysis phases. Ren et al. (2021)
discusses the implemented approaches in detail. In the following we provide an example for
running the package for each implemented models.

Example 1: Standard GP models
To compute the causal exposure response function, one can use the etimate_cerf_gp()

function. In this example, we generated a synthetic dataset of 500 observations and six
covariates. We considered the estimation of 𝑅(𝑤) for 𝑤 that are between 5- and 95-percentiles
of the observed exposure levels. We imposed this restriction to make sure that the positivity
assumption, which is required for the identifiability of 𝑅(𝑤) from the observed data, is not
likely to be violated (Ren et al., 2021). We then developed a wrapper function to modify the
number of threads in the SuperLearner package (Laan et al., 2007; Polley et al., 2021). We
estimated the GPS values using these wrapper functions. One can read more details by running
?GPCERF::estimate_gps in R. To compute the posterior mean and standard deviation of 𝑅(𝑤),
we need to provide the range of exposure values of interest and a range of hyperparameters
that will be examined as additional input and parameters. The function outputs an S3 object,
which can be further investigated using generic functions, as shown below.

library(GPCERF)

set.seed(781)

# Generate synthetic data with 500 data samples.

sim_data <- generate_synthetic_data(sample_size = 500,

gps_spec = 1)

# SuperLearner internal libraries' wrapper. (Optional)

m_xgboost <- function(nthread = 12, ...) {

SuperLearner::SL.xgboost(nthread = nthread, ...)
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}

m_ranger <- function(num.threads = 12, ...){

SuperLearner::SL.ranger(num.threads = num.threads, ...)

}

# Estimate GPS function

gps_m <- estimate_gps(cov_mt = sim_data[, paste0("cf", seq(1,6))],

w_all = sim_data$treat,

sl_lib = c("m_xgboost", "m_ranger"),

dnorm_log = TRUE)

# exposure values of interest

# We trim the exposure level to satisfy positivity assumption to avoid including

# extreme exposure values.

q1 <- stats::quantile(sim_data$treat, 0.05)

q2 <- stats::quantile(sim_data$treat, 0.95)

w_all <- seq(q1, q2, 1)

# Hyperparameters' range for grid search to find optimal hyperparameters

params_lst <- list(alpha = 10 ^ seq(-2, 2, length.out = 10),

beta = 10 ^ seq(-2, 2, length.out = 10),

g_sigma = c(0.1, 1, 10),

tune_app = "all")

# Estimate exposure response function

cerf_gp_obj <- estimate_cerf_gp(sim_data,

w_all,

gps_m,

params = params_lst,

outcome_col = "Y",

treatment_col = "treat",

covariates_col = paste0("cf", seq(1,6)),

nthread = 12)

The customized summary function provides the following:

summary(cerf_gp_obj)

GPCERF standard Gaussian grocess exposure response function object

Optimal hyper parameters(#trial: 300):

alpha = 12.9154966501488 beta = 12.9154966501488 g_sigma = 0.1

Optimal covariate balance:

cf1 = 0.069

cf2 = 0.082

cf3 = 0.063

cf4 = 0.066

cf5 = 0.056

cf6 = 0.081

Original covariate balance:

cf1 = 0.222

cf2 = 0.112

cf3 = 0.175

cf4 = 0.318
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cf5 = 0.198

cf6 = 0.257

----***----

As one can see, as part of the grid search, 300 different combination of hyper parameters
have been tried. Figure 1 shows the causal exposure response function and achieved covariate
balance in this simulated example.

plot(cerf_gp_obj)

Figure 1: Plot of GP models S3 object. Left: Estimated CERF with credible band. Right: Covariate
balance of confounders before and after weighting with GP approach.

The discussion on acceptable covariate balance for causal inference analyses is not within the
scope of this paper. However, in the literature, a mean covariate balance upper limit of 0.1 is
generally considered acceptable (Wu et al., 2020). It is possible to expand the hyperparameters’
search domain to achieve a lower covariate balance.

Example 2: Nearest neighbor GP models
As previously mentioned, GP models are limited in scalability. To address this limitation, the
estimate_cerf_nngp() function can be used to implement nearest neighbor GP models. While
most of the parameters for this model are similar to those used in the GP model, there are two
additional hyperparameters specific to the nnGP model that we will discuss in the following.

set.seed(781)

# Generate synthetic data with 500 data samples.

sim_data <- generate_synthetic_data(sample_size = 5000, gps_spec = 1)

# SuperLearner internal libraries' wrapper.

m_xgboost <- function(nthread = 12, ...) {

SuperLearner::SL.xgboost(nthread = nthread, ...)

}

m_ranger <- function(num.threads = 12, ...){

SuperLearner::SL.ranger(num.threads = num.threads, ...)

}

# Estimate GPS function

gps_m <- estimate_gps(cov_mt = sim_data[, paste0("cf", seq(1,6))],

w_all = sim_data$treat,

sl_lib = c("m_xgboost", "m_ranger"),

dnorm_log = TRUE)
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# exposure values of interest

# We trim the exposure level to satisfy positivity assumption to avoid including

# extreme exposure values.

q1 <- stats::quantile(sim_data$treat, 0.05)

q2 <- stats::quantile(sim_data$treat, 0.95)

w_all <- seq(q1, q2, 1)

# Hyperparameters' range for grid search to find optimal hyperparameters

params_lst <- list(alpha = 10 ^ seq(-2, 2, length.out = 10),

beta = 10 ^ seq(-2, 2, length.out = 10),

g_sigma = c(0.1, 1, 10),

tune_app = "all",

n_neighbor = 50,

block_size = 1e3)

# Estimate exposure response function

cerf_nngp_obj <- estimate_cerf_nngp(sim_data,

w_all,

gps_m,

params = params_lst,

outcome_col = "Y",

treatment_col = "treat",

covariates_col = paste0("cf", seq(1,6)),

nthread = 12)

The nearest neighbor GP model contains two controlling parameters: n_neighbor, which
indicates the size of the neighbor set, and block_size, which determines the size of the
computational chunks. The choice of block_size is primarily used to balance the trade-
off between speed and memory requirements, where a larger block_size leads to faster
computation but also requires more memory. It is worth noting that changing n_neighbor may
lead to different outcomes due to its approximate nature. However, the outcome values remain
unaffected by changes to block_size, which serves as an internal optimization parameter.

The customized summary function provides the following:

summary(cerf_nngp_obj)

GPCERF nearest neighbore Gaussian process exposure response function object summary

Optimal hyper parameters(#trial: 300):

alpha = 0.0278255940220712 beta = 0.215443469003188 g_sigma = 0.1

Optimal covariate balance:

cf1 = 0.062

cf2 = 0.070

cf3 = 0.091

cf4 = 0.062

cf5 = 0.076

cf6 = 0.088

Original covariate balance:

cf1 = 0.115

cf2 = 0.137

cf3 = 0.145

cf4 = 0.296

cf5 = 0.208
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cf6 = 0.225

----***----

Figure 2 shows the result of plot(cerf_nngp_obj) function.

Figure 2: Plot of nnGP models S3 object. Left: Estimated CERF with credible band. Right: Covariate
balance of confounders before and after weighting with nnGP approach.

Performance analyses of standard and nearest neighbor GP models

The time complexity of the standard Gaussian Process (GP) model is 𝑂(𝑛3), while for the
nearest neighbor GP (nnGP) model, it is 𝑂(𝑛 ∗𝑚3), where 𝑚 is the number of neighbors. An
in-depth discussion on achieving these complexities is outside the scope of this paper. Readers
interested in further details can refer to Ren et al. (2021). This section focuses on comparing
the wall clock time of standard GP and nnGP models in calculating the Conditional Exposure
Response Function (CERF) at a specific exposure level, 𝑤. We set the hyper-parameters to
values at 𝛼 = 𝛽 = 𝛾/𝜎 = 1. Figure 3 shows the comparison of standard GP model with nnGP
utilizing 50 nearest neighbors. Due to the differing parallelization architectures of the standard
GP and nnGP in our package, we conducted this benchmark on a single core. The sample
size was varied from 3,000 to 10,000, a range where nnGP begins to demonstrate notable
efficiency over the standard GP. We repeat the process 20 times with different seed values.
We plotted wall clock time against sample size for both methods. To enhance the visualization
of the increasing rate of wall clock time, we applied a log transformation to both axes. For
this specific set of analyses the estimated slope of 3.09 (ideally 3) for standard GP aligns with
its 𝑂(𝑛3) time complexity. According to the results, a sample size of 10,000 data samples is
not large enough to establish a meaningful relationship for the time complexity of the nnGP
model effectively.
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Figure 3: Representation of Wall Clock Time (s) vs. Data Samples for Standard GP and nnGP Models.
All computations are conducted with 𝑤 = 1 and 𝛼 = 𝛽 = 𝛾/𝜎 = 1. The process is repeated 20 times
using various seed values to ensure robustness. A jitter effect is applied to enhance the visibility of data
points. Both axes are displayed on log10 scales. The solid lines represent the linear regression modeled
as 𝑙𝑚(𝑙𝑜𝑔10(𝑊𝐶)~𝑙𝑜𝑔10(𝑛)).

Figure 4 compares the performance of the nnGP model across three nearest neighbor categories:
50, 100, and 200, using a data sample sequence ranging from 5,000 to 100,000 with intervals
of 5,000. For each category, different sets of runs demonstrate a linear relationship, consistent
with an 𝑂(𝑛) time complexity, assuming that 𝑚3 remains constant for varying sample sizes
within each category.

Figure 4: Representation of Wall Clock Time (s) vs. Data Samples of the nnGP model across different
nearest neighbor categories (50, 100, 200) over a range of data sample sizes from 5,000 to 100,000 in 5,000
increments. . All computations are conducted with 𝑤 = 1 and 𝛼 = 𝛽 = 𝛾/𝜎 = 1. Both axes are displayed
on log10 scales. The solid lines represent the linear regression modeled as 𝑙𝑚(𝑙𝑜𝑔10(𝑊𝐶)~𝑙𝑜𝑔10(𝑛)).
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Software related features
We have implemented several features to enhance the package performance and usability.
By utilizing an internal parallel package, the software is capable of scaling up in a shared
memory system. Additionally, we have implemented a logging infrastructure that tracks the
software’s internal progress and provides users and developers with detailed information on
processed runs (Daróczi, 2021). We have also activated continuous integration (CI) through
GitHub actions, which runs unit tests and checks the code quality for any submitted pull
request. The majority of the codebase is tested at least once. To ensure efficient development,
we follow a successful git branching model (Driessen, 2010) and use the tidyverse styling guide.
The software is available on CRAN (Khoshnevis et al., 2024) and is primarily written in R (R
Core Team, 2023). However, some of the core computations are written in C++ using the
Rcpp package (Eddelbuettel, 2013; Eddelbuettel & Balamuta, 2018; Eddelbuettel & François,
2011). All analyses were conducted using R Statistical Software [v4.2.3; R Core Team (2023)].
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