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Statement of Need
The National Cancer Institute (NCI) monitors population level cancer trends as part of its
Surveillance, Epidemiology, and End Results (SEER) program. This program consists of state
or regional level cancer registries which collect, analyze, and annotate cancer pathology reports.
From these annotated pathology reports, each individual registry aggregates cancer phenotype
information from electronic health records. This data is then used to create summary statistics
about cancer incidence and mortality to facilitate population health monitoring. Extracting
phenotypic information from these reports is a labor intensive task, requiring specialized
knowledge about the reports and cancer. Automating the information extraction process from
cancer pathology reports has the potential to improve data quality by extracting information
in a consistent manner across registries. It can also improve patient outcomes by reducing
the time from diagnosis, enabling rapid case ascertainment for clinical trials. Here we present
FrESCO, a modular deep-learning natural language processing (NLP) library initially designed
for extracting pathology information from clinical text documents. This repository is not solely
limited to clinical medical text, but may also be used by researchers just getting started with
NLP methods and those looking for a robust solution for their classification problems.

State of the Field
Other software to meet the demanding challenges of bringing ML to biomedical studies have
emerged in recent years. Monai (Cardoso et al., 2022) is oriented towards ML on medical
imaging data and FuseMedML (Golts et al., 2023) creates general and multimodal data
structures that are useful for biomedical ML. Most similar to FrESCO is PyHealth (Zhao
et al., 2021) though it is more broadly scoped, focusing on MIMIC (Medical Information
Mart for Intensive Care), electronic intensive care unit (eICU), and observational medical
outcomes partnership common data model (OMOP-CDM) databases. Biomedical libraries
such as Med7 (Kormilitzin et al., 2021) and EHRkit (Li et al., 2022) focus on electronic health
records in general and machine learning tasks such as named-entity recognition and document
summarization. Our FrESCO library is singularly focused on cancer pathology reports and
provides the model building workflow for auto-coding SEER pathology reports, which is a
fundamental requirement in a clinical deployment environment (Harris et al., 2022).

Summary
The FrESCO codebase provides a deep-learning Python package based on PyTorch (Paszke
et al., 2019) for extracting information from clinical text. While the software is designed for
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clinical tasks, it may also be used for typical NLP tasks such as sentiment classification. Our
flexible and modular codebase provides independent modules for: (1) loading text data and
creating data structures, (2) building and training deep-learning models, and (3) scoring and
evaluating trained models. Provided within the code repository are three model architectures
to classify text data:

1. the multi-task convolutional neural network (MTCNN) of (Alawad et al., 2020),

2. the hierarchical self-attention network (HiSAN) described in (Gao et al., 2019), and

3. the case-level context model (CLC) of (Gao et al., 2020) for hierarchical datasets.

Each of these models is available with the deep-abstaining classifier (DAC) of (Thulasidasan et
al., 2019), which is presently only available as part of the CANDLE code repository (Institute,
2023). The DAC adds an additional “abstention” class to the specified model so that the
classifier may choose none of the available labels for a given task. While each model may work
on generic data, the HiSAN and CLC architectures were specifically designed to work with
patient data and are not available in other software packages like PyHealth (Zhao et al., 2021).
As an example, the CLC model uses multiple pathology reports linked to an individual patient
in a hierarchical way. We have adapted the FrESCO codebase from our workflow within an
airgapped system which uses patient health data that is not publicly available. This is the
same tool we use internally, aside from internal consistency checks, we are making it publicly
available to work with user supplied text data, the only requirement being the format of the
data files, which is specified in the README.

We have intentionally written this library with a working knowledge of Python as the only
prerequisite. Those who are just getting started or are experienced NLP researchers or
practitioners will find the code easy to understand and expand upon. For example, one may
create a state-of-the-art NLP model by simply editing the configuration file, without touching a
line of code. Lastly, as the model definitions are independent modules, one may experiment with
their own custom model definitions within the training and evaluation framework developed
herein.
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