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Summary

Bayesian optimization is a sample-efficient method for solving the optimization of a black-box
function. In particular, it successfully shows its effectiveness in diverse applications such
as hyperparameter optimization, automated machine learning, material design, sequential
assembly, and chemical reaction optimization. In this paper we present an easy-to-use Bayesian
optimization framework, referred to as BayesO, which is written in Python and licensed under
the MIT license. To briefly introduce our software, we describe the functionality of BayesO
and various components for software development.

Statement of need

Bayesian optimization (Brochu et al., 2010; Garnett, 2023; Shahriari et al., 2016) is a
sample-efficient method for solving the optimization of a black-box function f:

x* = argmaxf(x), (1)
xeX

x* = argminf(x) or
xeX

where X' C R? is a d-dimensional space. In general, finding a solution x* of Equation 1,
i.e., a global optimum on X, is time-consuming since we cannot employ any knowledge, e.g.,
gradients and Hessians, in solving this problem. Compared to other possible approaches,
e.g., random search and evolutionary algorithm, Bayesian optimization successfully shows
its effectiveness by utilizing a probabilistic regression model and an acquisition function. In
particular, the sample-efficient approach of our interest enables us to apply it in various
real-world applications such as hyperparameter optimization (Snoek et al., 2012), automated
machine learning (Feurer et al., 2015, 2022), neural architecture search (Kandasamy et al.,
2018), material design (Frazier & Wang, 2016), free-electron laser configuration search (Duris
et al., 2020), organic molecule synthesis (Korovina et al., 2020), sequential assembly (Kim et
al., 2020), and chemical reaction optimization (Shields et al., 2021).

In this paper, we present an easy-to-use Bayesian optimization framework, referred to as
BayesO (pronounced “bayes-0"), to effortlessly utilize Bayesian optimization in the problems
of interest to practitioners. Our BayesO is written in one of the most popular programming
languages, Python, and licensed under the MIT license. Moreover, it provides various features
including different types of input variables (e.g., vectors and sets (Kim et al., 2021)) and
different surrogate models (e.g., Gaussian process regression (Rasmussen & Williams, 2006)
and Student-t process regression (Shah et al., 2014)). Along with the description of such
functionality, we cover various components for software development in the BayesO project.
We hope that this BayesO project encourages researchers and practitioners to readily utilize
the powerful black-box optimization technique in diverse academic and industrial fields.
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Figure 1: Visualization of Bayesian optimization procedure. Given an objective function, Equation 2
(colored by turquoise) and four initial points (denoted as light blue + at iteration 1), a query point
(denoted as pink x) is determined by constructing a surrogate model (colored by orange) and maximizing
an acquisition function (colored by light green) every iteration.

Bayesian optimization

As discussed in the work (Brochu et al., 2010; Garnett, 2023; Shahriari et al., 2016), supposing
that a target objective function is black-box, Bayesian optimization is an approach to optimizing
the objective in a sample-efficient manner. It repeats three primary steps:

1. Building a probabilistic regression model, which is capable of estimating the degrees of
exploration and exploitation;

2. Optimizing an acquisition function, which is defined with the probabilistic regression
model;

3. Evaluating the target objective at a query point, which is determined by optimizing the
acquisition function,

until a predefined stopping criterion, e.g., an iteration budget or a budget of wall-clock time, is
satisfied. Eventually, the best solution among the queries evaluated is selected by considering
the function evaluations. As shown in Figure 1, Bayesian optimization iteratively finds a
candidate of global optimum, repeating the aforementioned steps. Note that, for this example,
an objective function is

f(z) = 2sin(z) + 2 cos(2z) + 0.05z, (2)

where x € [—5, 5], and Gaussian process regression and expected improvement are used as a
surrogate model and an acquisition function, respectively.

Several related projects on Bayesian optimization have been proposed. GPyOpt (The GPyOpt
authors, 2016), built on GPy (GPy, 2012), has been implemented. SMAC3 (Lindauer et al.,
2022) has been developed using random forests (Breiman, 2001). Moreover, by making use
of modern automatic differentiation tools, i.e., TensorFlow (Abadi et al., 2016) and PyTorch
(Paszke et al., 2019), GPflowOpt (Knudde et al., 2017) and BoTorch (Balandat et al., 2020)
have been introduced.
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Overview of BayesO

BayesO

Figure 2: Logo of BayesO

In this section we cover the overview of BayesO including probabilistic regression models and
acquisition functions, by referring to BayesO v0.5.4. For higher versions of BayesO, see official
documentation. Note that the BayesO logo is shown in Figure 2.

BayesO supports the following probabilistic regression models:

= Gaussian process regression (Rasmussen & Williams, 2006);
= Student-t process regression (Shah et al., 2014);
= Random forest regression (Breiman, 2001).

Although random forest regression is not a probabilistic model inherently, we can compute its
mean and variance functions as reported by Hutter et al. (2014).

We implement several acquisition functions:

= pure exploration;

= pure exploitation;

= probability of improvement (Kushner, 1964);

= expected improvement (Jones et al., 1998);

= augmented expected improvement (Huang et al., 2006);

= Gaussian process upper confidence bound (Srinivas et al., 2010).

As a strategy to optimize an acquisition function, we suggest the following options: DIRECT
(Jones et al., 1993), CMA-ES (Hansen & Ostermeier, 1997), and L-BFGS-B (Byrd et al.,
1995). In addition, we also include Thompson sampling (Thompson, 1933) in BayesO.

Furthermore, to support an easy-to-use interface, we implement the wrappers of Bayesian
optimization for particular scenarios:

= a run with randomly-chosen initial inputs;
= a run with initial inputs provided;
= a run with initial inputs provided and their evaluations.

Software development for BayesO

To manage BayesO productively, we actively utilize external development management packages.

= Code analysis: Our software is monitored and inspected to satisfy the code conventions
predefined in our software.

= Type hints: As supported in Python 3, we provide type hints for any arguments.

= Unit tests: Unit tests for our software are included. We have achieved 100% coverage.
In addition, unit tests for measuring execution time are also provided.

= Dependency: Our package depends on NumPy (Harris et al., 2020), SciPy (Virtanen et
al., 2020), a quasi-Monte Carlo submodule in SciPy (Roy et al., 2023), pycma (Hansen
et al., 2019), and tqdm (The tqdm authors, 2016).

= Installation: Our software is released via the Python Package Index (PyPl) meaning
users can easily install BayesO into their environment.

= Documentation: We create official documentation with docstring.
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Conclusion

In this work we have presented a Bayesian optimization framework, named BayesO. We hope
that our project enables many researchers to suggest a new algorithm by modifying BayesO
and many practitioners to utilize Bayesian optimization in their applications.
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