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Summary
This paper presents the HiPart package, an open-source native Python library that provides
efficient and interpretable implementations of divisive hierarchical clustering algorithms. HiPart
supports interactive visualizations for the manipulation of the execution steps allowing the
direct intervention of the clustering outcome. This package is highly suited for Big Data
applications as the focus has been given to the computational efficiency of the implemented
clustering methodologies. The dependencies used are either Python build-in packages or highly
maintained stable external packages. The software is provided under the MIT license. The
package’s source code and documentation can be found at GitHub.

Statement of need
A highly researched problem by a variety of research communities is the problem of clustering.
However, high-dimensional clustering still constitutes a significant challenge, plagued by the
curse of dimensionality (Hutzenthaler et al., 2020). Hierarchical divisive algorithms developed
in the recent years (David P. Hofmeyr, 2016; David P. Hofmeyr et al., 2019; David P. Hofmeyr
& Pavlidis, 2019; Pavlidis et al., 2016; Tasoulis et al., 2010) have shown great potential for
the particular case of high dimensional data, incorporating dimensionality reduction iteratively
within their algorithmic procedure. Additionally, they seem unique in providing a hierarchical
format of the clustering result with low computational cost, in contrast to the commonly used
but computationally demanding agglomerative clustering methods.

Although the discovery of a hierarchical format is crucial in many fields, such as bioinformatics
(Luo et al., 2003; Modena et al., 2014), to the best of our knowledge, this package is the first
native Python implementation of divisive hierarchical clustering algorithms. We particularly
focus on the “Principal Direction Divisive Clustering (PDDP)” algorithm (Boley, 1998) for its
potential to effectively tackle the curse of dimensionality and its impeccable time performance
(Tasoulis et al., 2010).

Simultaneously, we provide implementations of a complete set of hierarchical divisive clustering
algorithms with a similar basis. These are the dePDDP (Tasoulis et al., 2010), the iPDDP
(Tasoulis et al., 2010), the kM-PDDP (Zeimpekis & Gallopoulos, 2008), and the bisecting
k-Means (BKM) (Savaresi & Boley, 2001). We also provide additional features which are
not included in the original developments of the aforementioned methodologies that make
them appropriate for the discovery of arbitrary shaped or non-linear separable clusters. In
detail, we incorporate kernel Principal Component Analysis (kPCA) (Scholkopf et al., 1999)
and Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000; Tharwat, 2020) for the
iterative dimensionality reduction steps.

As a result, the package provides a fully parameterized set of algorithms that can be applied in
a diverse set of applications.
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Software Description
The HiPart (Hierarchical Partitioning) package is divided into three major sections:

• Method implementation
• Static Visualization
• Interactive Visualization

Method Implementation
The package employs an object-oriented approach for the implementation of the algorithms,
similarly to that of (Bach et al., 2022), while incorporating design similarities with the scikit-
learn library (Pedregosa et al., 2011). Meaning, a class instance executes each of the algorithms,
and the class instance’s attributes are the algorithm’s hyper-parameters and results.

For the execution of the algorithms, users need to call either the predict or the fit_predict

method of each algorithm’s execution class. The algorithm parameterization can be applied at
the constructor of their respective class.

Static Visualization
Two static visualization methods are included. The first one is a 2-Dimensional representation
of all the data splits generated by each algorithm during the hierarchical procedure. The goal is
to provide an insight to the users regarding each node of the clustering tree and, subsequently,
each step of the algorithm’s execution.

The second visualization method is a dendrogram that represents the splits of all the divisive
algorithms. The dendrogram’s figure creation is implemented by the SciPy package (Virtanen
et al., 2020), and it is fully parameterized as stated in the library.

Interactive Visualization
In the interactive mode, we provide the possibility for stepwise manipulation of the algorithms.
Users can choose a particular step (node of the tree) and manipulate the split-point on top
of a two-dimensional visualization, instantly altering the clustering result. Each manipulation
resets the algorithm’s execution from that step onwards, resulting in a restructuring of the
sub-tree of the manipulated node.

Development Notes
For the development of the package, we complied with the PEP8 style standards, and we
enforced it with the employment of flake8 command-line utility. To ensure the code’s quality,
we implemented tests using the pytest module to assert the correctness of the implementations.
In addition, platform compatibility has been assured through extensive testing, and the package
development in its entirety uses only well-established or native Python packages. The package
has been released as open-source software under the MIT License. For more information
regarding potential contributions or for the submission of an issue, or a request, the package is
hosted as a repository on Github.

Experiments and Comparisons
In this section, we provide clustering results with respect to the execution speed and clustering
performance for the provided implementations. For direct comparison, we employ a series
of well-established clustering algorithms. These are the k-Means (Likas et al., 2003), the
Agglomerative (AGG) (Ackermann et al., 2014) and the OPTICS (Ankerst et al., 1999)
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of the scikit-learn (Pedregosa et al., 2011) Python library and the fuzzy c-means (FCM)
algorithm (Bezdek et al., 1984) of the fuzzy-c-means (Dias, 2019) Python package. Clustering
performance is evaluated using the Normalized Mutual Information (NMI) score (Yang et al.,
2016).

Four widely used data sets from the field of bioinformatics are employed along with two popular
data sets benchmark data set for text and image clustering, respectively:

• the Deng (Deng et al., 2014),
• the Baron (Baron et al., 2016),
• the TGCA Pan-cancer (Rala, 2023) (Cancer),
• the Chen (Chen et al., 2017),
• the USPS (Hull, 1994),
• the BBC (Greene & Cunningham, 2006),

All experiments took place on a server computer with Linux operating system, kernel version
5.11.0, with an Intel Core i7-10700K CPU @ 3.80GHz and four DDR4 RAM dims of 32GB
with 2133MHz frequency. Default parameters were used for the execution of all the algorithms,
and the actual number of clusters was provided to algorithms as a parameter when required.

Figure 1: Dendrogram figure for the Cancer data set with the use of the dePDDP algorithm and the
dendrogram visualization module of the HiPart library. The line below the tree represents the colour of
the original cluster each sample belongs.

In Table 1 we present the mean performance of all methods with respect to execution time
(time in secs) and NMI across 100 experiments. We observe that HiPart implementations
perform exquisitely in terms of execution time while still being comparable with respect to
clustering performance.

Table 1: Clustering results with respect to execution time and clustering performance.

Algorithm Time (Seconds) NMI Time (Seconds) NMI
Gene Expression Data

Deng (135, 12548) Baron (1886, 14878)
iPDDP 0.10 0.76 1.16 0.08
dePDDP 0.14 0.70 2.16 0.53
PDDP 0.15 0.54 2.55 0.53
kM-PDDP 0.25 0.61 3.81 0.52
BKM 0.50 0.64 11.51 0.52
k-Means 0.14 0.71 7.52 0.48
AGG 0.04 0.72 14.54 0.51
OPTICS 27.78 0.48 710.99 0.13
FCM 1.37 0.68 163.63 0.45
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Algorithm Time (Seconds) NMI Time (Seconds) NMI
Cancer (801, 20531) Chen (14437, 23284)

iPDDP 0.90 0.67 13.18 0.30
dePDDP 1.06 0.93 20.71 0.36
PDDP 1.04 0.74 37.52 0.48
kM-PDDP 1.27 0.86 53.73 0.48
BKM 5.94 0.88 255.85 0.48
k-Means 1.54 0.98 249.72 0.48
AGG 3.09 0.98 1218.68 0.49
OPTICS 266.39 0.34 27089.35 0.00
FCM 5.53 0.53 5710.83 0.26

Benchmark Data
USPS (4575, 256) BBC (2225, 21213)

iPDDP 0.02 0.55 2.02 0.60
dePDDP 0.05 0.65 1.70 0.60
PDDP 0.04 0.60 2.57 0.78
kM-PDDP 0.17 0.50 2.93 0.74
BKM 0.38 0.58 9.92 0.65
k-Means 0.12 0.72 4.68 0.35
AGG 1.15 0.77 23.18 0.64
OPTICS 635.05 0.04 1055.75 0.06
FCM 2.92 0.58 4.73 0.60

Conclusions and Future Work
We present a highly time-efficient clustering package with a suite of tools that give the
capability of addressing problems in high-dimensional clustering problems. Also, the developed
new visualization tools enhance understanding and identification of the underlying clustering
data structure.

We plan to continuously expand the HiPart package in the future through the addition of
more hierarchical algorithms and by providing even more options for dimensionality reduction,
such as the use of recent projection pursuit methodologies (David P. Hofmeyr, 2016; David P.
Hofmeyr et al., 2019; David P. Hofmeyr & Pavlidis, 2019; Pavlidis et al., 2016). Our final aim
is to establish the golden standard when considering hierarchical divisive clustering.
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