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Summary

Measure transport is a rich area in applied mathematics that involves the construction of
deterministic transformations—known as transport maps—between probability distributions (San-
tambrogio, 2015). These maps characterize a complex target distribution as a (deterministic)
transformation of a simple reference distribution (e.g., a standard Gaussian). In the context
of probabilistic modeling, transport maps enable easy generation of samples from the target
distribution and direct evaluation of the target probability density function. Monotone triangu-
lar maps (Baptista et al., 2022) are a specific class of transport maps endowed with several
computational advantages over non-triangular maps, such as easy invertibility and training, and
yet sufficiently general to represent any absolutely continuous distribution; they are also the
building block of many normalizing flow architectures commonly used in the machine learning
community (Papamakarios et al., 2021).

Triangular maps are also well suited to many tasks in Bayesian inference, including the modeling
of conditional distributions Spantini et al. (2018) and the acceleration of posterior sampling
(Bigoni et al., 2016; Cotter et al., 2019; Moselhy & Marzouk, 2012; Parno & Marzouk, 2018).
The fundamental idea is to convert the problem of characterizing a probability distribution
through Monte Carlo sampling, variational inference, or density estimation into an optimization
problem over multivariate monotone functions. The efficient solution of this optimization
problem is especially important when using maps as part of online algorithms, as commonly
encountered in sequential inference (Spantini et al., 2022).

In practice, working with triangular maps requires the definition of a parametric family of
multivariate monotone functions. The Monotone Parameterization Toolkit (MParT) aims
to provide performance-portable implementations of such parameterizations. MParT is a
C++ library with bindings to Python, Julia, and Matlab that emphasizes fast execution
and parsimonious parameterizations that can enable near real-time computation on low- and
moderate-dimensional problems.

Statement of need

Several existing software packages have the ability to parameterize monotone functions,
including TensorFlow Probability (Dillon et al., 2017), TransportMaps (Bigoni, 2015), ATM
(Baptista et al., 2021), and MUQ (Parno et al., 2021). TensorFlow probability has a bijection
class that allows deep neural network-based functions, such as normalizing flows (Papamakarios
et al., 2021) to be easily defined and trained while also leveraging GPU computing resources
if available but is focused on deep neural network parameterizations best suited for high
dimensional problems. The TransportMaps, ATM, and MUQ packages use an alternative
parameterization based on rectified polynomial expansions that is more compact and easier to
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train on low to moderate dimensional problems. At the core of these packages are scalar-valued
functions T); : RY — R of the form

Zg
Td<xl:d;w) = f(xlr“vxdflvO;W) +/ g(adf(x17“'7xd717t;w))dt7 (1)
0

where f(xy,4; W) is a general (non-monotone) function parameterized by coefficients w and
g : R — R* is a smooth positive function. Typically f takes the form of a multivariate
polynomial expansion. The efficient implementation of Equation 1 is non-trivial as it requires
the coordination of numerical quadrature, polynomial evaluations, and gradient computations
with respect to both the input x and the parameters w. But the associated optimization
problem has many desirable features, such as the absence of spurious local minima (Baptista
et al., 2022), which enable efficient and reliable map training.

MParT aims to provide a performance portable shared-memory implementation of parameteriza-
tions built on Equation 1. MParT uses Kokkos (Edwards et al., 2014) to leverage multithreading
on either CPUs or GPUs with a common code base. MParT provides an efficient low-level library
that can then be used to accelerate higher level packages like TransportMaps, ATM, and MUQ
that cannot currently leverage GPU resources. Bindings to Python, Julia, and Matlab are also
provided to enable a wide variety of users to leverage the fast C+-+ core from the language of
their choice.

Performance and scalability

The following plots show the performance of MParT for the evaluation of a rectified degree-5
polynomial transport map on R, using different languages and Kokkos backends. The
monotone parameterization is constructed from Hermite polynomials and an adaptive Simpson
quadrature rule. Random map coefficients and sample locations are used in this test. At each
sample level, the map is evaluated at fifty randomly selected coefficients.
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Figure 1: Time to evaluate triangular map from different languages and backends.

The results show similar performance across languages (each using OpenMP backend with 8
threads) and nearly identical performance between the Threads and OpenMP backends. For
the evaluation of 10¢ samples, the OpenMP backend with 16 threads is approximately 14x
faster than the serial backend. The CUDA backend is approximately 82 faster than the serial
backend, or 6x faster than the OpenMP backend. Tests were performed in a Kubernetes
container using 8 cores of a Intel(R) Xeon(R) Gold 6248 CPU and a Tesla V100-SXM2 GPU
with CUDA version 11.2.
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