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Summary
Many important and challenging problems in combinatorial optimization (CO) can be expressed
as graph search problems, in which graph vertices represent full or partial solutions and edges
represent decisions that connect them. Graph structure not only introduces strong relational
inductive biases for learning (Battaglia et al., 2018) – in this context, by providing a way to
explicitly model the value of transitioning (along edges) between one search state (vertex)
and the next – but lends itself to problems both with and without clearly defined algebraic
structure. For example, classic CO problems on graphs such as the Traveling Salesman Problem
(TSP) can be expressed as either pure graph search or integer programs. Other problems,
however, such as molecular optimization, do no have concise algebraic formulations and yet are
readily implemented as a graph search (V. et al., 2022; Zhou et al., 2019). Such “model-free”
problems constitute a large fraction of modern reinforcement learning (RL) research owing to
the fact that it is often much easier to write a forward simulation that expresses all of the state
transitions and rewards, than to write down the precise mathematical expression of the full
optimization problem. In the case of molecular optimization, for example, one can use domain
knowledge alongside existing software libraries to model the effect of adding a single bond or
atom to an existing but incomplete molecule, and let the RL algorithm build a model of how
good a given decision is by “experiencing” the simulated environment many times through. In
contrast, a model-based mathematical formulation that fully expresses all the chemical and
physical constraints is intractable.

In recent years, RL has emerged as an effective paradigm for optimizing searches over graphs
and led to state-of-the-art heuristics for games like Go and chess, as well as for classical CO
problems such as the TSP. This combination of graph search and RL, while powerful, requires
non-trivial software to execute, especially when combining advanced state representations such
as Graph Neural Networks (GNN) with scalable RL algorithms.

Statement of need
The graphenv Python library is designed to 1) make graph search problems more readily
expressible as RL problems via an extension of the OpenAI gym API (Brockman et al., 2016)
while 2) enabling their solution via scalable learning algorithms in the popular RLlib library
(Liang et al., 2018). The intended audience consist of researchers working on graph search
problems that are amenable to a reinforcement learning formulation, broadly described as
“learning to optimize”. This includes those working on classical combinatorial optimization
problems such as the TSP, as well as problems that do not have a clear algebraic expression
but where the environment dynamics can be simulated, for instance, molecular design.

RLlib provides convenient, out-of-the-box support for several features that enable the application
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of RL to complex search problems (e.g., parametrically-defined actions and invalid action
masking). However, native support for action spaces where the action choices change for
each state is challenging to implement in a computationally efficient fashion. The graphenv

library provides utility classes that simplify the flattening and masking of action observations
for choosing from a set of successor states at every node in a graph search.

Related software efforts have addressed parts of the above need. OpenGraphGym (Zheng
et al., 2020) implements RL-based stragies for common graph optimization challenges such
as minimum vertex cover or maximum cut, but does not interface with external RL libraries
and has minimal documentation. Ecole (Prouvost et al., 2020) provides an OpenAI-like gym
environment for combinatorial optimization, but intends to operate in concert with traditional
mixed integer solvers rather than directly exposing the environment to an RL agent.

Examples of usage
This package is a generalization of methods employed in the optimization of molecular
structure for energy storage applications, funded by US Department of Energy (DOE)’s
Advanced Research Projects Agency - Energy (V. et al., 2022). Specifically, this package
enables optimization against a surrogate objective function based on high-throughput density
functional theory calculations (S. V. et al., 2021; St. John, Guan, Kim, Kim, et al., 2020;
St. John, Guan, Kim, Etz, et al., 2020) by considering molecule selection as an iterative
process of adding atoms and bonds, transforming the optimization into a rooted search over a
directed, acyclic graph. Ongoing work is leveraging this library to enable similar optimization for
inorganic crystal structures, again using a surrogate objective function based on high-throughput
quantum mechanical calculations (Pandey et al., 2021).
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