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Summary
Gaussian processes (GPs, Rasmussen & Williams, 2006) are Bayesian nonparametric models that
have been successfully used in applications such as geostatistics (Matheron, 1963), Bayesian
optimisation (Mockus et al., 1978), and reinforcement learning (Deisenroth & Rasmussen,
2011). GPJax is a didactic GP library targeted at researchers who wish to develop novel GP
methodology. The scope of GPJax is to provide users with a set of composable objects for
constructing GP models that closely resemble the underlying maths that one would write on
paper. Furthermore, by the virtue of being written in JAX (Bradbury et al., 2018), GPJax
natively supports CPUs, GPUs and TPUs through efficient compilation to XLA, automatic
differentiation and vectorised operations. Consequently, GPJax provides a modern GP package
that can effortlessly be tailored, extended and interleaved with other libraries to meet the
individual needs of researchers and scientists.

Statement of Need
From both an applied and methodological perspective, GPs are widely employed in the statistics
and machine learning communities. High-quality software packages that promote GP modelling
are accountable for much of their success. However, there currently exists a gap within the
JAX ecosystem for a Gaussian process package to be developed that incorporates scalable
inference techniques. GPJax seeks to resolve this.

GPJax has been carefully tailored to amalgamate with the JAX ecosystem. For efficient Markov
Chain Monte Carlo inference, GPJax can utilise samplers from BlackJax (BlackJax, 2021)
and TensorFlow Probability (Abadi et al., 2016). For gradient-based optimisation, GPJax

integrates seamlessly with Optax (Babuschkin et al., 2020), providing a vast suite of optimisers
and learning rate schedules. To efficiently represent probability distributions, GPJax leverages
Distrax (Babuschkin et al., 2020) and TensorFlow Probability (Abadi et al., 2016). To combine
GPs with deep learning methods, GPJax can incorporate the functionality provided within
Haiku (Babuschkin et al., 2020). The GPJax documentation includes examples of each of these
integrations.

The foundation of each abstraction given in GPJax is a Chex (Babuschkin et al., 2020) dataclass
object. These require significantly less boilerplate code than regular Python classes, leading
to a more readable codebase. Moreover, Chex dataclasses are registered as PyTree nodes,
facilitating the applications of JAX operations such as just-in-time compilation and automatic
differentiation to any GPJax object.

The intimacy between GPJax and the underlying maths also makes GPJax an excellent package
for people new to GP modelling. Having the ability to easily cross-reference the contents of a
textbook with the code that one is writing is invaluable when trying to build an intuition for a
new statistical method. We further support this effort in GPJax through documentation that
provides detailed explanations of the operations conducted within each notebook.

Pinder, & Dodd. (2022). GPJax: A Gaussian Process Framework in JAX. Journal of Open Source Software, 7(75), 4455. https://doi.org/10.
21105/joss.04455.

1

https://doi.org/10.21105/joss.04455
https://github.com/openjournals/joss-reviews/issues/4455
https://github.com/thomaspinder/GPJax
https://doi.org/10.5281/zenodo.6882220
https://dfm.io
https://orcid.org/0000-0002-9328-5652
https://github.com/gpleiss
https://github.com/theorashid
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455


Wider Software Ecosystem
Within the Python community, the three most popular packages for GP modelling are GPFlow
(Matthews et al., 2017), GPyTorch (Gardner et al., 2018), and GPy (GPy, 2012). Despite
these packages being indispensable tools for the community, none support integration with a
JAX-based workflow. On the other hand, BayesNewton (Wilkinson et al., 2021) and TinyGP
(Foreman-Mackey, 2021) packages utilise a Jax backend. However, BayesNewton is designed
on top of ObJax (Objax Developers, 2020), making integration with the broader Jax ecosystem
challenging. Meanwhile, TinyGP offers excellent integration with inference frameworks such
as NumPyro (Phan et al., 2019) but does not yet support inducing points frameworks (e.g.,
Hensman et al., 2013). GPJax exists to resolve these issues. Furthermore, modern research
from the GP literature, graph kernels (Borovitskiy et al., 2021) and Wasserstein barycentres
for GPs (Mallasto & Feragen, 2017), for example, are supported within GPJax but absent
from these packages. Finally, the Stheno package (Bruinsma, 2022) supports a JAX backend
along with TensorFlow, PyTorch and Numpy. Whilst this integrates GPs into an extensive JAX
workflow, GPJax has the advantage of being a pure JAX codebase, whereas Stheno requires
using a custom linear algebra framework.

For completeness, packages written for languages other than Python include GPML (Ras-
mussen & Nickisch, 2010) and GPStuff (Vanhatalo et al., 2013) in MATLAB. An R port also
exists for GPStuff. Within Julia, there exists GaussianProcesses.jl (Fairbrother et al., 2022),
AugmentedGaussianProcesses.jl (Galy-Fajou et al., 2020) and Stheno.jl (Tebbutt W, 2022).

GP implementations are available in numerous modern probabilistic programming languages
such as NumPyro (Phan et al., 2019), Stan (Carpenter et al., 2017), and PyMC (Salvatier et
al., 2016).

External Usage
Two recent research papers (Pinder et al., 2021, 2022) utilise the graph kernel functionality
provided by GPJax. Furthermore, GPJax is being used to build probabilistic ensembles of climate
models (Amos et al., 2022) and perform adaptive sampling in deep-sea environmental (Dodd
et al., 2022).
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