
GPJax: A Gaussian Process Framework in JAX
Thomas Pinder1¶ and Daniel Dodd2

1 Department of Mathematics and Statistics, Lancaster University, United Kingdom 2 STOR-i Centre
for Doctoral Training, Lancaster University, United Kingdom ¶ Corresponding author

DOI: 10.21105/joss.04455

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey

Reviewers:
• @gpleiss
• @theorashid

Submitted: 24 May 2022
Published: 26 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Gaussian processes (GPs, Rasmussen & Williams, 2006) are Bayesian nonparametric models that
have been successfully used in applications such as geostatistics (Matheron, 1963), Bayesian
optimisation (Mockus et al., 1978), and reinforcement learning (Deisenroth & Rasmussen,
2011). GPJax is a didactic GP library targeted at researchers who wish to develop novel GP
methodology. The scope of GPJax is to provide users with a set of composable objects for
constructing GP models that closely resemble the underlying maths that one would write on
paper. Furthermore, by the virtue of being written in JAX (Bradbury et al., 2018), GPJax
natively supports CPUs, GPUs and TPUs through efficient compilation to XLA, automatic
differentiation and vectorised operations. Consequently, GPJax provides a modern GP package
that can effortlessly be tailored, extended and interleaved with other libraries to meet the
individual needs of researchers and scientists.

Statement of Need
From both an applied and methodological perspective, GPs are widely employed in the statistics
and machine learning communities. High-quality software packages that promote GP modelling
are accountable for much of their success. However, there currently exists a gap within the
JAX ecosystem for a Gaussian process package to be developed that incorporates scalable
inference techniques. GPJax seeks to resolve this.

GPJax has been carefully tailored to amalgamate with the JAX ecosystem. For efficient Markov
Chain Monte Carlo inference, GPJax can utilise samplers from BlackJax (BlackJax, 2021)
and TensorFlow Probability (Abadi et al., 2016). For gradient-based optimisation, GPJax

integrates seamlessly with Optax (Babuschkin et al., 2020), providing a vast suite of optimisers
and learning rate schedules. To efficiently represent probability distributions, GPJax leverages
Distrax (Babuschkin et al., 2020) and TensorFlow Probability (Abadi et al., 2016). To combine
GPs with deep learning methods, GPJax can incorporate the functionality provided within
Haiku (Babuschkin et al., 2020). The GPJax documentation includes examples of each of these
integrations.

The foundation of each abstraction given in GPJax is a Chex (Babuschkin et al., 2020) dataclass
object. These require significantly less boilerplate code than regular Python classes, leading
to a more readable codebase. Moreover, Chex dataclasses are registered as PyTree nodes,
facilitating the applications of JAX operations such as just-in-time compilation and automatic
differentiation to any GPJax object.

The intimacy between GPJax and the underlying maths also makes GPJax an excellent package
for people new to GP modelling. Having the ability to easily cross-reference the contents of a
textbook with the code that one is writing is invaluable when trying to build an intuition for a
new statistical method. We further support this effort in GPJax through documentation that
provides detailed explanations of the operations conducted within each notebook.

Pinder, & Dodd. (2022). GPJax: A Gaussian Process Framework in JAX. Journal of Open Source Software, 7(75), 4455. https://doi.org/10.
21105/joss.04455.

1

https://doi.org/10.21105/joss.04455
https://github.com/openjournals/joss-reviews/issues/4455
https://github.com/thomaspinder/GPJax
https://doi.org/10.5281/zenodo.6882220
https://dfm.io
https://orcid.org/0000-0002-9328-5652
https://github.com/gpleiss
https://github.com/theorashid
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455


Wider Software Ecosystem
Within the Python community, the three most popular packages for GP modelling are GPFlow
(Matthews et al., 2017), GPyTorch (Gardner et al., 2018), and GPy (GPy, 2012). Despite
these packages being indispensable tools for the community, none support integration with a
JAX-based workflow. On the other hand, BayesNewton (Wilkinson et al., 2021) and TinyGP
(Foreman-Mackey, 2021) packages utilise a Jax backend. However, BayesNewton is designed
on top of ObJax (Objax Developers, 2020), making integration with the broader Jax ecosystem
challenging. Meanwhile, TinyGP offers excellent integration with inference frameworks such
as NumPyro (Phan et al., 2019) but does not yet support inducing points frameworks (e.g.,
Hensman et al., 2013). GPJax exists to resolve these issues. Furthermore, modern research
from the GP literature, graph kernels (Borovitskiy et al., 2021) and Wasserstein barycentres
for GPs (Mallasto & Feragen, 2017), for example, are supported within GPJax but absent
from these packages. Finally, the Stheno package (Bruinsma, 2022) supports a JAX backend
along with TensorFlow, PyTorch and Numpy. Whilst this integrates GPs into an extensive JAX
workflow, GPJax has the advantage of being a pure JAX codebase, whereas Stheno requires
using a custom linear algebra framework.

For completeness, packages written for languages other than Python include GPML (Ras-
mussen & Nickisch, 2010) and GPStuff (Vanhatalo et al., 2013) in MATLAB. An R port also
exists for GPStuff. Within Julia, there exists GaussianProcesses.jl (Fairbrother et al., 2022),
AugmentedGaussianProcesses.jl (Galy-Fajou et al., 2020) and Stheno.jl (Tebbutt W, 2022).

GP implementations are available in numerous modern probabilistic programming languages
such as NumPyro (Phan et al., 2019), Stan (Carpenter et al., 2017), and PyMC (Salvatier et
al., 2016).

External Usage
Two recent research papers (Pinder et al., 2021, 2022) utilise the graph kernel functionality
provided by GPJax. Furthermore, GPJax is being used to build probabilistic ensembles of climate
models (Amos et al., 2022) and perform adaptive sampling in deep-sea environmental (Dodd
et al., 2022).

Acknowledgments
As an open-source project, GPJax has benefitted from contributions made by the wider
community. We especially thank Juan Emmanuel Johnson and are grateful for the thoughts
and advice from the wider GP community.

Funding Statement
TP is supported by the Data Science for the Natural Environment project (EPSRC grant number
EP/R01860X/1). DD is supported by the STOR-i Centre for Doctoral Training (EPSRC grant
number EP/S022252/1) and the Research Hub for Transforming Energy Infrastructure through
Digital Engineering (ARC grant number IH200100009).

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., & others. (2016). TensorFlow: A system for large-scale machine
learning. 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 265–283.

Pinder, & Dodd. (2022). GPJax: A Gaussian Process Framework in JAX. Journal of Open Source Software, 7(75), 4455. https://doi.org/10.
21105/joss.04455.

2

https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455


Amos, M., Pinder, T., Nemeth, C., Leslie, D., & Young, P. (2022). Probabilistic climate model
projections, using Gaussian processes and optimal transport. In Preparation.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D.,
Cai, T., Clark, A., Danihelka, I., Fantacci, C., Godwin, J., Jones, C., Hennigan, T., Hessel,
M., Kapturowski, S., Keck, T., Kemaev, I., King, M., … Viola, F. (2020). The DeepMind
JAX Ecosystem. http://github.com/deepmind

BlackJax. (2021). BlackJAX; a sampling library designed for ease of use, speed and modularity.
In GitHub repository. GitHub. https://github.com/blackjax-devs/blackjax/

Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., & Durrande,
N. (2021). Matérn Gaussian processes on graphs. International Conference on Artificial
Intelligence and Statistics, 2593–2601.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.2.5) [Computer software]. http:
//github.com/google/jax

Bruinsma, W. (2022). Stheno. In GitHub repository. GitHub. https://github.com/wesselb/
stheno

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01

Deisenroth, M., & Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient
approach to policy search. Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 465–472.

Dodd, D., Cripps, E., Jonathan, P., & Leslie, D. (2022). Bayesian adaptive sampling in a
hostile deep-sea environment. In Preparation.

Fairbrother, J., Nemeth, C., Rischard, M., Brea, J., & Pinder, T. (2022). GaussianProcesses.jl:
A nonparametric bayes package for the julia language. Journal of Statistical Software,
102(1), 1–36. https://doi.org/10.18637/jss.v102.i01

Foreman-Mackey, D. (2021). TinyGP. In GitHub repository. GitHub. https://github.com/
dfm/tinygp

Galy-Fajou, T., Wenzel, F., & Opper, M. (2020). Automated augmented conjugate inference for
non-conjugate Gaussian process models. In S. Chiappa & R. Calandra (Eds.), Proceedings
of the twenty third international conference on artificial intelligence and statistics (Vol.
108, pp. 3025–3035). PMLR.http://proceedings.mlr.press/v108/galy-fajou20a.html

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., & Wilson, A. G. (2018). GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. Advances in
Neural Information Processing Systems, 31.

GPy. (2012). GPy: A Gaussian process framework in Python. In GitHub repository. GitHub.
http://github.com/SheffieldML/GPy

Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data.

Mallasto, A., & Feragen, A. (2017). Learning from uncertain curves: The 2-Wasserstein metric
for Gaussian processes. Advances in Neural Information Processing Systems, 30.

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266.
https://doi.org/10.2113/gsecongeo.58.8.1246

Matthews, A. G. de G., Van Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-
Villagrá, P., Ghahramani, Z., & Hensman, J. (2017). GPflow: A Gaussian process library

Pinder, & Dodd. (2022). GPJax: A Gaussian Process Framework in JAX. Journal of Open Source Software, 7(75), 4455. https://doi.org/10.
21105/joss.04455.

3

http://github.com/deepmind
https://github.com/blackjax-devs/blackjax/
http://github.com/google/jax
http://github.com/google/jax
https://github.com/wesselb/stheno
https://github.com/wesselb/stheno
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v102.i01
https://github.com/dfm/tinygp
https://github.com/dfm/tinygp
%20http://proceedings.mlr.press/v108/galy-fajou20a.html%20
http://github.com/SheffieldML/GPy
https://doi.org/10.2113/gsecongeo.58.8.1246
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455


using TensorFlow. Journal of Machine Learning Research, 18(40), 1–6.

Mockus, J., Tiesis, V., & Zilinskas, A. (1978). The application of Bayesian methods for seeking
the extremum. Towards Global Optimization, 2(117-129), 2. https://doi.org/10.1007/
3-540-07165-2_55

Objax Developers. (2020). Objax (Version 1.2.0). https://github.com/google/objax

Phan, D., Pradhan, N., & Jankowiak, M. (2019). Composable effects for flexible and
accelerated probabilistic programming in NumPyro. arXiv Preprint arXiv:1912.11554.
https://doi.org/10.48550/arxiv.1912.11554

Pinder, T., Turnbull, K., Nemeth, C., & Leslie, D. (2021). Gaussian processes on hypergraphs.
arXiv Preprint arXiv:2106.01982. https://doi.org/10.48550/arxiv.2106.01982

Pinder, T., Turnbull, K., Nemeth, C., & Leslie, D. (2022). Street-level air pollution modelling
with graph Gaussian processes. ICLR: AI for Earth and Space Science.

Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning (GPML)
toolbox. The Journal of Machine Learning Research, 11, 3011–3015.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. MIT
press Cambridge, MA. https://doi.org/10.7551/mitpress/3206.001.0001

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python
using PyMC3. PeerJ Computer Science, 2, e55. https://doi.org/10.7717/peerj-cs.55

Tebbutt W, T. R., Bruinsma W. (2022). Stheno.jl. In GitHub repository. GitHub. https:
//github.com/JuliaGaussianProcesses/Stheno.jl

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., & Vehtari, A. (2013).
GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Re-
search.

Wilkinson, W. J., Särkkä, S., & Solin, A. (2021). Bayes-Newton methods for approximate
Bayesian inference with PSD guarantees. arXiv Preprint arXiv:2111.01721. https://doi.
org/10.48550/arxiv.2111.01721

Pinder, & Dodd. (2022). GPJax: A Gaussian Process Framework in JAX. Journal of Open Source Software, 7(75), 4455. https://doi.org/10.
21105/joss.04455.

4

https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/3-540-07165-2_55
https://github.com/google/objax
https://doi.org/10.48550/arxiv.1912.11554
https://doi.org/10.48550/arxiv.2106.01982
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7717/peerj-cs.55
https://github.com/JuliaGaussianProcesses/Stheno.jl
https://github.com/JuliaGaussianProcesses/Stheno.jl
https://doi.org/10.48550/arxiv.2111.01721
https://doi.org/10.48550/arxiv.2111.01721
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455

	Summary
	Statement of Need
	Wider Software Ecosystem
	External Usage
	Acknowledgments
	Funding Statement
	References

