
UnROOT: an I/O library for the CERN ROOT file
format written in Julia
Tamás Gál 1,2, Jerry (Jiahong) Ling 3, and Nick Amin 4

1 Erlangen Centre for Astroparticle Physics 2 Friedrich-Alexander-Universität Erlangen-Nürnberg 3
Harvard University 4 University of California, Santa Barbara

DOI: 10.21105/joss.04452

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @PerilousApricot
• @jpata

Submitted: 03 June 2022
Published: 18 August 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
UnROOT.jl is a pure Julia implementation of CERN’s ROOT (Brun & Rademakers, 1997)
file I/O (.root) software, which is fast and memory-efficient, and composes well with Julia’s
high-performance iteration, array, and multi-threading interfaces.

Statement of Need
The High-Energy Physics (HEP) community, especially in data analysis, has been facing the
two-language problem for a long time. Often, physicists would start prototyping with a Python

front-end which glues to a C/C++/Fortran back-end. Soon they would hit a task that could be
challenging to express in columnar (i.e., “vectorized”) style, a type of problem that is normally
tackled with libraries like numpy (Harris et al., 2020) or pandas (The pandas development team,
2020). This usually would lead to them either writing C++ kernels and interfacing them with
Python, or porting the prototype to C++ and starting to maintain two code bases including
the wrapper code. Specific to HEP, AwkwardArray (Pivarski et al., 2018) can be seen as a
compromise between the two solutions, where the user writes in a special columnar style that
has some flexibility for addressing the jaggedness of HEP data.

All traditional options represent increasing engineering effort for authors and users, often in
multiple programming languages. Many steps of this process are critical, such as identifying
bottlenecks and creating an architecture that is simultaneously performant and maintainable
while still being user-friendly and logically structured. Using a Python front-end and dancing
across language barriers also hinders the ability to parallelize tasks down to event level,
as the existing usage often relies on chunk or even file level parallelization. Finally, newer
techniques such as automatic differentiation also work more smoothly without language barriers,
allowing physicists to develop algorithms. With Julia’s active auto diff community 1, we expect
UnROOT.jl to be one of the cornerstones for physicists.

UnROOT.jl attempts to solve all of the above by choosing Julia, a high-performance language
with a simple and expressive syntax (Bezanson et al., 2017). Julia is designed to solve the
two-language problem in general. This has also been studied for HEP specifically (Stanitzki &
Strube, 2021). Analysis software written in Julia can freely escape to a for-loop whenever
vectorized-style processing is not flexible enough, without any performance degradation. At
the same time, UnROOT.jl transparently supports multi-threading and multi-processing by
providing data structures that are a subtype of AbstractArray, the built-in abstract type
for array-like objects, which allows easy interfacing with array-routines from other packages,
thanks to multiple dispatch, one of the main features of Julia.

1https://juliadiff.org/

Gál et al. (2022). UnROOT: an I/O library for the CERN ROOT file format written in Julia. Journal of Open Source Software, 7(76), 4452.
https://doi.org/10.21105/joss.04452.

1

https://orcid.org/0000-0001-7821-8673
https://orcid.org/0000-0002-3359-0380
https://orcid.org/0000-0003-2560-0013
https://doi.org/10.21105/joss.04452
https://github.com/openjournals/joss-reviews/issues/4452
https://github.com/JuliaHEP/UnROOT.jl
https://doi.org/10.5281/zenodo.7008076
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/PerilousApricot
https://github.com/jpata
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04452

Features and Functionality
The ROOT data format is flexible and mostly self-descriptive. Users can define their own data
structures (C++ classes) that derive from ROOT classes and serialise them into directories,
trees, and branches. The information about the deserialisation is written to the output file
(therefore, it’s self-descriptive) but there are some basic structures and constants needed
to bootstrap the parsing process. One of the biggest advantages of the ROOT data format
is the ability to store jagged structures like nested arrays of structs with different sub-array
lengths. In high-energy physics, such structures are preferred to represent, for example, particle
interactions and detector responses as signals from different hardware components, combined
into a tree of events.

UnROOT.jl understands the core structure of ROOT files, and is able to decompress and deserialize
instances of the commonly used TH1, TH2, TDirectory, TTree, etc. ROOT classes. All
basic C++ types for TTree branches are supported as well, including their nested variants.
Additionally, UnROOT.jl provides a way to hook into the deserialisation process of custom types
where the automatic parsing fails. At the time of this article, UnROOT is already being used
successfully in the data analysis of the KM3NeT neutrino telescope. And just like RDataFrame,
it can be directly used on “NTuple” TTree such as the NANOAOD format used by the CMS
collaboration (Ehatäht, 2020).

Opening and loading a TTree lazily, i.e., without reading the whole data into memory, is simple:

julia> using UnROOT

julia> f = ROOTFile(”test/samples/NanoAODv5_sample.root”)

ROOTFile with 2 entries and 21 streamers.

test/samples/NanoAODv5_sample.root

Events

”run”

”luminosityBlock”

”event”

”HTXS_Higgs_pt”

”HTXS_Higgs_y”

...

julia> mytree = LazyTree(f, ”Events”, [”Electron_dxy”, ”nMuon”, r”Muon_(pt|eta)$”])

Row Electron_dxy nMuon Muon_eta Muon_pt

Vector{Float32} UInt32 Vector{Float32} Vector{Float32}

1 [0.000371] 0 [] []

2 [-0.00982] 2 [0.53, 0.229] [19.9, 15.3]

3 [] 0 [] []

4 [-0.00157] 0 [] []

...

As seen in the above example, the entries in the columns are multi-dimensional and jagged.
The LazyTree object acts as a table that suports sequential or parallel iteration, selections,
and filtering based on ranges or masks, and operations on whole columns:

for event in mytree

... Operate on event

end

Threads.@threads for event in mytree # multi-threading

... Operate on event

end

Gál et al. (2022). UnROOT: an I/O library for the CERN ROOT file format written in Julia. Journal of Open Source Software, 7(76), 4452.
https://doi.org/10.21105/joss.04452.

2

https://doi.org/10.21105/joss.04452

mytree.Muon_pt # a column as a lazy vector of vectors

The LazyTree is designed as <: AbstractArray, which makes it compose well with the
rest of the Julia ecosystem. For example, syntactic loop fusion 2 and Query-style tabular
manipulations provided by packages like Query.jl 3 without any additional code support just
work out-of-the-box.

For example, the following code will only iterate through the tree once to find all events with
exactly two muons and two electrons, due to loop fusion:

t <: LazyTree

findall(@. t.nMuon==2 & t.nElectron==2)

And query-style filtering can be done with no code addition from UnROOT.jl’s end thanks to
Julia’s composability due to multiple dispatch 4:

julia> using Query, DataFrame

julia> @from evt in mytree begin

@where length(evt.Jet_pt) > 6

@let njets=length(evt.Jet_pt)

@let njets40=sum(evt.Jet_pt.>40)

@select {njets=njets, njets40, evt.MET_pt}

@collect DataFrame

end

Synthetic Benchmark against C++ ROOT

Benchmark against various C++ ROOT solution can be found in our benchmark repo5. Here
we summarize the results:

Single-threaded composite benchmark

Language Cold Run Warmed Run
Julia 20.58 s 19.81 s
PyROOT RDF 40.21 s N/A
Compiled C++ ROOT
Loop

28.16 s N/A

Compiled RDF 19.82 s N/A

4-threaded composite benchmark

Language Cold Run Warmed Run
Julia 5.46 s 5.07 s
PyROOT RDF N/A N/A
Compiled C++ ROOT
Loop

N/A N/A

2https://julialang.org/blog/2017/01/moredots/
3https://github.com/queryverse/Query.jl
4https://www.youtube.com/watch?v=kc9HwsxE1OY
5https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark#single-threaded-composite-

benchmark

Gál et al. (2022). UnROOT: an I/O library for the CERN ROOT file format written in Julia. Journal of Open Source Software, 7(76), 4452.
https://doi.org/10.21105/joss.04452.

3

https://nbviewer.jupyter.org/github/Moelf/UnROOT_RDataFrame_MiniBenchmark/blob/master/UnROOT_benchmark.ipynb
https://nbviewer.jupyter.org/github/Moelf/UnROOT_RDataFrame_MiniBenchmark/blob/master/RDataFrame_benchmark.ipynb
https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark/tree/master/composite_benchmarks#root-rdataframe-g-compiled
https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark/tree/master/composite_benchmarks#root-rdataframe-g-compiled
https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark/blob/master/composite_benchmarks/RDataFrame_benchmark_compiled_single.cpp
https://nbviewer.jupyter.org/github/Moelf/UnROOT_RDataFrame_MiniBenchmark/blob/master/UnROOT_benchmark.ipynb
https://doi.org/10.21105/joss.04452

Language Cold Run Warmed Run
Compiled RDF 5.64 s N/A

Usage Comparison with Existing Software
This section focuses on comparison with other existing ROOT I/O solutions in the Julia
universe. However, one honorable mention is uproot (Pivarski et al., 2021), which is a
purely Python-based ROOT I/O library that played (and still plays) an important role in the
development of UnROOT.jl as it was at the time of this article the most complete and best
documented ROOT I/O implementation.

• UpROOT.jl is a wrapper for the aforementioned uproot Python package and uses
PyCall.jl 6 as a bridge, which means that it relies on Python as a glue language.
In addition to that, uproot itself utilises the C++ library AwkwardArray (Pivarski et
al., 2018) to efficiently deal with jagged data in ROOT files. Most of the features of
uproot are available in the Julia context, but there are intrinsic performance and usability
drawbacks due to the three-language architecture.

• ROOT.jl 7 is one of the oldest Julia ROOT packages. It uses C++ bindings to directly
wrap the ROOT framework and therefore is not limited ot I/O. Unfortunately, the Cxx.jl
8 package that is used to generate the C++ glue code does not support Julia 1.4 or
later. The multi-threaded features are also limited.

Conclusion
UnROOT.jl is an important package in high-energy physics and related scientific fields where
the ROOT dataformat is established, since the ability to read and parse scientific data is certainly
the first mandatory step to open the window to a programming language and its package
ecosystem. UnROOT.jl has demonstrated tree processing speeds at the same level as the C++

ROOT framework in per-event iteration as well as the Python-based uproot library in chunked
iteration.

References
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Brun, R., & Rademakers, F. (1997). ROOT: An object oriented data analysis framework. Nucl.
Instrum. Meth. A, 389, 81–86. https://doi.org/10.1016/S0168-9002(97)00048-X

Ehatäht, K. (2020). NANOAOD: a new compact event data format in CMS. EPJ Web Conf.,
245, 06002. https://doi.org/10.1051/epjconf/202024506002

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Pivarski, J., Osborne, I., Ifrim, I., Schreiner, H., Hollands, A., Biswas, A., Das, P., Roy
Choudhury, S., & Smith, N. (2018). Awkward array (Version 1.9.0rc4) [Computer software].
Zenodo. https://doi.org/10.5281/zenodo.6522027

6https://github.com/JuliaPy/PyCall.jl
7https://github.com/JuliaHEP/ROOT.jl
8https://github.com/JuliaInterop/Cxx.jl

Gál et al. (2022). UnROOT: an I/O library for the CERN ROOT file format written in Julia. Journal of Open Source Software, 7(76), 4452.
https://doi.org/10.21105/joss.04452.

4

https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark/blob/master/composite_benchmarks/RDataFrame_benchmark_compiled_MT.cpp
https://doi.org/10.1137/141000671
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/202024506002
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.6522027
https://doi.org/10.21105/joss.04452

Pivarski, J., Schreiner, H., Smith, N., Burr, C., Kalinkin, D., Stark, G., Hartmann, N., Davis,
D., O’Neil, R., Novak, A., Greiner, B., Stanislaus, B., ChristopheRappold, Deaconu,
C., Cervenkov, D., Rübenach, J., Bendavid, J., Lieret, K., Peresano, M., … Held, A.
(2021). Scikit-hep/uproot4: 4.1.3 (Version 4.1.3) [Computer software]. Zenodo. https:
//doi.org/10.5281/zenodo.5539722

Stanitzki, M., & Strube, J. (2021). Performance of Julia for high energy physics analy-
ses. Computing and Software for Big Science, 5(1), 1–11. https://doi.org/10.1007/
s41781-021-00053-3

The pandas development team. (2020). Pandas (latest) [Computer software]. Zenodo.
https://doi.org/10.5281/zenodo.3509134

Gál et al. (2022). UnROOT: an I/O library for the CERN ROOT file format written in Julia. Journal of Open Source Software, 7(76), 4452.
https://doi.org/10.21105/joss.04452.

5

https://doi.org/10.5281/zenodo.5539722
https://doi.org/10.5281/zenodo.5539722
https://doi.org/10.1007/s41781-021-00053-3
https://doi.org/10.1007/s41781-021-00053-3
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.04452

	Summary
	Statement of Need
	Features and Functionality
	Synthetic Benchmark against C++ ROOT
	Single-threaded composite benchmark
	4-threaded composite benchmark

	Usage Comparison with Existing Software
	Conclusion
	References

