
pygetpapers: a Python library for automated retrieval of
scientific literature
Ayush Garg 1, Richard D Smith-Unna 2, and Peter Murray-Rust 3

1 University of Richmond, Richmond, VA 23173, United States 2 LabDAO, https://www.labdao.com/
3 Yusuf-Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2
1EW, UK

DOI: 10.21105/joss.04451

Software
• Review
• Repository
• Archive

Editor: Chris Hartgerink
Reviewers:

• @khinsen
• @VeroniqueLegrand
• @kjappelbaum

Submitted: 24 May 2022
Published: 07 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
pygetpapers has been developed to allow searching of the scientific literature in repositories
with a range of textual queries and metadata. It downloads content using APIs in an automated
fashion and is designed to be extensible to the growing number of Open Access repositories.

Statement of Need
An increasing amount of research, particularly in medicine and applied science, is now based
on meta-analysis and systematic review of the existing literature (“Systematic Reviews,” 2022).
In such reviews, scientists frequently download thousands of articles and analyze them by
Natural Language Processing (NLP) through Text and Data Mining (TDM) or Content Mining.
A common approach is to search bibliographic resources with keywords, download the hits,
scan them manually, and reject papers that do not fit the criteria for the meta-analysis. The
typical text-based searches on sites are broad, with many false positives and often only based
on abstracts. We know of cases where systematic reviewers downloaded 30,000 articles and
eventually used 30. Retrieval is often done by crawling/scraping sites, such as journals but is
easier and faster when these articles are in Open Access repositories such as arXiv, EuropePMC,
bioRxiv, medRxiv. But each repository has its own API and functionality, which makes it
hard for individuals to (a) access, (b) set flags, and (c) use generic queries. In 2015, we
reviewed tools for scraping websites and decided that none met our needs and so developed
getpapers (Smith-Unna, 2021), with the key advance of integrating a query submission with
bulk fulltext-download of all the hits.

pygetpapers
getpapers was written in NodeJS and has now been completely rewritten in Python3
(pygetpapers) for easier distribution and integration. Typical use of getpapers is shown
in a recent paper (Wind et al., 2021) where the authors “analyzed key term frequency within
20,000 representatives [Antimicrobial Resistance] articles”.

An important aspect is to provide a simple cross-platform approach for scientists who may find
tools like curl too complex and want a one-line command to combine the search, download,
and analysis into a single: “please give me the results”. We’ve tested this on many interns
who learn pygetpapers in minutes. It was also easy to wrap it into a tkinter graphical user
interface (GUI) (Lundh, 1999). The architecture of the results is simple and natural, based on
full-text files in the normal filesystem. The result of pygetpapers is interfaced using a “main”
or “controller” JSON file (for eg. eupmc_results.json), which allows corpus to be reused/added
to. This allows maximum flexibility of re-use and some projects have large amounts of derived
data in these directories.

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

1

https://orcid.org/0000-0001-7016-747X
https://orcid.org/0000-0001-8721-7197
https://orcid.org/0000-0003-3386-3972
https://doi.org/10.21105/joss.04451
https://github.com/openjournals/joss-reviews/issues/4451
https://github.com/petermr/pygetpapers/
https://doi.org/10.5281/zenodo.6805842
https://chjh.nl
https://orcid.org/0000-0003-1050-6809
https://github.com/khinsen
https://github.com/VeroniqueLegrand
https://github.com/kjappelbaum
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04451

pygetpapers -q ”METHOD: invasive plant species” -k 10 -o ”invasive_plant”

-c --makehtml -x

OUTPUT:

INFO: Final query is METHOD: invasive plant species

INFO: Total Hits are 17910

0it [00:00, ?it/s]WARNING: Keywords not found for paper 1

WARNING: Keywords not found for paper 4

1it [00:00, 164.87it/s]

INFO: Saving XML files to C:\invasive_plant*\fulltext.xml

100%|███████████████████████████████████| 10/10 [00:21<00:00, 2.11s/it]

Example query of pygetpapers

The number of repositories is rapidly expanding, driven by the rise in preprint use. These
repositories and aggregation sites such as EuropePMC, HAL, SciELO use their own dialect of
query syntax and API access. A major aspect of pygetpapers is to make it easy to add new
repository downloaders, often by people who have little coding experience. pygetpapers is built
on a modular system and repository-specific code can be swapped in as needed. By configuring
repositories in a configuration file, users can easily configure support for new repositories.

[europe_pmc]

query_url=https://www.ebi.ac.uk/europepmc/webservices/rest/searchPOST

citationurl=https://www.ebi.ac.uk/europepmc/webservices/rest

/{source}/{pmcid}/citations?page=1&pageSize=1000&format=xml

referencesurl=https://www.ebi.ac.uk/europepmc/webservices/rest

/{source}/{pmcid}/references?page=1&pageSize=1000&format=xml

xmlurl=https://www.ebi.ac.uk/europepmc/webservices/rest/{pmcid}/fullTextXML

suppurl=https://www.ebi.ac.uk/europepmc/webservices/rest

/{pmcid}/supplementaryFiles

zipurl= http://europepmc.org/ftp/suppl/OA/{key}/{pmcid}.zip

date_query=SUPPORTED

term=SUPPORTED

update=SUPPORTED

restart=SUPPORTED

class_name=EuropePmc

library_name= europe_pmc

features_not_supported = [”filter”,]

Example configuration for a repository (europePMC)

Many searches are simple keywords or phrases. However, these often fail to include synonyms
and phrases and authors spend time creating complex error-prone boolean queries. We have
developed a dictionary-based approach to automate much of the creation of complex queries.

The downloaded material is inherently complex (See Data). Some of this has been system-
atized, especially in biosciences, and the NIH (US National Institutes of Health) led to the
JATS/NISO standard to create highly structured documents.

Frequently users want to search incrementally, e.g., downloading part and resuming later
(especially with poor connectivity where work is often lost). Also, pygetpapers allows regular
updates, e.g., weekly searches of preprint servers.

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

2

https://doi.org/10.21105/joss.04451

pygetpapers takes the approach of downloading once and re-analyzing later on local filestore.
This saves repeated querying where connections are poor or where there is suspicion that
publishers may surveil users. Moreover, publishers rarely provide more than full-text Boolean
searches, whereas local tools can analyze sections and non-textual material.

We do not know of other tools which have the same functionality. curl (Hostetter et al.,
1997) requires detailed knowledge of the download protocol. VosViewer (J. & L, 2010) is
mainly aimed at bibliography/citations.

Overview of the architecture

Data
raw data

The download may be repository-dependent but usually contains:

• download metadata. (query, date, errors, etc.)

• journal/article metadata. We use JATS-NISO (Standardized Markup for Journal Articles,
2021) which is widely used by publishers and repository owners, especially in bioscience
and medicine. There are over 200 tags.

• fulltext. This can be

– XML (fulltext and metadata)
– images (these may not always be available)
– tables (these are often separate)
– PDF - usually includes the whole material but not machine-sectioned
– HTML . often avaliable on websites

• supplemental data. This is very variable, often as PDF but also raw data files and
sometimes zipped. It is not systematically arranged but pygetpapers allows for some
heuristics.

• figures. This is not supported by some repositories, and others may require custom code.

Figure 1: Fig.1 Architecture of pygetpapers

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

3

https://doi.org/10.21105/joss.04451

Fig.1 Architecture of pygetpapers

For this reason we create a directory structure with a root (CProject) and a (CTree) subdirectory
for each downloaded article or document. pygetpapers will routinely populate this with 1-5
files or subdirectories (see above). At present pygetpapers always creates a *_result.json file
(possibly empty) and this can be used as a marker for identifying CTrees. This means that a
CProject contains subdirectories which may be CTrees or not, distinguished by this marker.

derived data

In addition to the downloaded data (already quite variable), users often wish to create new
derived data and this directory structure is designed so that tools can add an arbitrary amount
of new data, normally in sub-directory trees. For example we have sibling projects that add
data to the CTree:

• docanalysis (text analysis including NLTK and spaCy/sciSpaCy

• pyamiimage image processing and analysis of figures

C:.

│ eupmc_results.json

│

├───PMC8157994

│ eupmc_result.json

│ fulltext.xml

│

├───PMC8180188

│ eupmc_result.json

│ fulltext.xml

│

and with examples of derived data

├───PMC8198815

│ eupmc_result.json

│ fulltext.xml

|. bag_of_words.txt

|. figure/

|. raw.jpg

|. skeleton.png

│

├───10.9999_123456 # CTree due to fooRxiv_result.json

│ fooRxiv_result.json

│ fulltext.xml

|. bag_of_words.txt

|. search/

|. results/

|. terpenes.csv

│

|. univ_bar_thesis_studies_on_lantana/ # CTree dues to thesis_12345_results.json

|. thesis_12345_results.json

| fulltext.pdf

|. figures/

|. figure/

| Fig1/

|.

|____summary/ # not CTree as no child *_results.json

|. bag_of_words.txt

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

4

https://github.com/ContentMine/CTree/blob/master/CProject.md
https://github.com/ContentMine/CTree/blob/master/CTree.md
https://github.com/ContentMine/CTree/blob/master/CProject.md
https://github.com/ContentMine/CTree/blob/master/CTree.md
https://github.com/ContentMine/CTree/blob/master/CTree.md
https://github.com/explosion/spaCy
https://github.com/petermr/pyamiimage
https://doi.org/10.21105/joss.04451

|. figures/

| <aggregated and filtered figures>

Typical download directory

Several types of download have been combined in this CProject and some CTrees have derived
data.

Code
Download protocol

Most repository APIs provide a cursor-based approach to querying:

1. A query is sent and the repository creates a list of M hits (pointers to documents), sets
a cursor start, and returns this information to the pygetpapers client.

2. The client requests a chunk of size N <= M (normally 25-1000) and the repository
replies with N pointers to documents.

3. The server response is pages of hits (metadata) as XML , normally <= 1000 hits per
page (1 sec).

4. pygetpapers - incremental aggregates XML metadata as python dict in memory.

5. If cursor indicates next page, pygetpapers submits a query for next page, otherwise it
terminates the data collection and processes the python dict.

6. If user has requested supplemental data (e.g., references, citations, fulltext) then the
pygetpapers iterates through the python dict and uses the identifier, usually in the form
of DOI, to query and download supplemental data seperately.

7. When the search is finished, pygetpapers writes the metadata to CProject (Top level
project directory) as JSON (total, and creates CTrees (per-article directories) with
individual metadata).

8. It also recovers from crashes and restarts if needed).

The control module pygetpapers.py reads the commandline and

• Selects the repository-specific downloader

• Creates a query from user input and/or terms from dictionaries

• Adds options and constraints

• Downloads according to the protocol above, including recording progress in a metadata
file

Generic downloading concerns
• Download speeds. Excessively rapid or voluminous downloads can overload servers and are

sometimes hostile (DOS). We have discussed this with major sites (EuropePMC, biorXiv,
Crossref, etc. and therefore choose to download sequentially instead of sending parallel
requests in pygetpapers.

• Authentication (alerting repo to downloader header). pygetpapers supports anonymous,
non-authenticated, access but includes a header (e.g., for Crossref)

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

5

https://doi.org/10.21105/joss.04451

Design
The tool has been designed for ease of implementation, installation (including platform
independence) and future extension. It also abstracts some of the variation in query languages
and APIs (where there do not appear to be standards). For example for “date”, EuropePMC
uses FIRST_PDATE[DD-MM-YYYY to DD-MM-YY] (This is the format in which you provide a date
constraint to a query for EuropePMC) but bioRxiv uses DD-MM-YYYY/DD-MM-YY. pygetpapers
provides DATE as an abstraction. It also uses a commandline, which makes it easy either to
wrap the use in system calls, or layer a GUI on top.

Some repositories only support metadata while others include text and some even provide links
to data downloads; again pygetpapers supports this range. Because there are hundreds of
repositories (including preprints) the design includes a modular approach. And because some
repositories emit variable amounts of information we can customise the outputs.

Implementation
getpapers was implemented in NodeJS, which allows multithreading and therefore potentially
download rates of several XML documents per second on a fast line. Installing NodeJS was
a problem on some systems (especially Windows) and was not well suited for integration
with scientific libraries (mainly coded in Java and Python). We, therefore, decided to rewrite
in Python, keeping only the command line and output structure, and have found very easy
integration with other tools, including GUIs. pygetpapers can be run both as a command-line
tool and a module, which makes it versatile.

core
The core mainly consists of:

• pygetpapers.py (query-builder and runner). This includes query abstractions such as
dates and Boolean queries for terms

• download_tools.py (generic code for query/download (REST))

repository interfaces
We have tried to minimise the amount of repository-specific code, choosing to use declarative
configuration files. To add a new repository you will need to:

• create a configuration file (Fig. 2)

• subclass the repo from repository_interface.py

• add any repository specific code to add features or disable others

Interface with other tools
Downloading is naturally modular, rather slow, and we interface by writing all output to the
filesystem. This means that a wide range of tools (Unix, Windows, Java, Python, etc.) can
analyze and transform it. The target documents are usually static so downloads only need to
be done once. Among our own downstream tools are

• pyami (Murray-Rust, 2021) - sectioning the document

• docanalysis (Ayush Garg, 2021) - textual analysis and Natural Language Processing

• pyamiimage (Peter Murray-Rust, 2021) - analysis of the content of images in downloaded
documents

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

6

https://doi.org/10.21105/joss.04451

• third party text analysis of PDF using GROBID(GROBID, 2008--2021) and PDF-
Box(Apache PDFBox® - a Java PDF Library, n.d.).

Acknowledgements
We acknowledge contributions from Shweata N. Hegde in helping write the documentation.
We also acknowledge Matthew Evans’ support to help improve the quality of the code, and
the repository.

Contribution statement
Ayush Garg: Development of the Tool, Architecture. Richard D. Smith-Unna: Base framework,
work on getpapers (predecessor to pygetpapers). Peter Murray-Rust: Supervision, framework,
writing manuscript.

References
Apache PDFBox® - a java PDF library. (n.d.). https://pdfbox.apache.org/

Ayush Garg, S. N. H. (2021). Docanalysis - unsupervised entity extraction (Version 0.0.7)
[Computer software]. https://github.com/petermr/docanalysis

GROBID. (2008--2021). GitHub. https://github.com/kermitt2/grobid

Hostetter, M., Kranz, D. A., Seed, C., Terman, C., & Ward, S. (1997). Curl: A gentle slope
language for the web. World Wide Web Journal, 2(2), 121–134.

J., E. N., & L, W. (2010). Software survey: VOSviewer, a computer program for bibliometric
mapping’. Scientometrics, 84(2). https://doi.org/10.1007/s11192-009-0146-3

Lundh, F. (1999). An introduction to tkinter. URL: Www. Pythonware. Com/Library/Tkin-
ter/Introduction/Index. Htm.

Murray-Rust, P. (2021). Pyami - semantic reader of the scientific literature (Version 0.0.17)
[Computer software]. https://github.com/petermr/pyami/

Peter Murray-Rust, V. S. M. R., Anubhab Chakraborty. (2021). Pyamiimage - tools to
extract semantic information from scientific diagrams (Version 0.0.8) [Computer software].
https://github.com/petermr/pyamiimage

Smith-Unna, R. (2021). Getpapers - tools to extract semantic information from scientific dia-
grams (Version 0.4.17) [Computer software]. https://github.com/ContentMine/getpapers

Standardized markup for journal articles: Journal article tag suite (JATS) | NISO website.
(2021). www.niso.org/standards-committees/jats .

Systematic reviews. (2022). BioMed Central.

Wind, L. L., Briganti, J. S., & Brown, A. M. (2021). Finding what is inaccessible: Antimicrobial
resistance language use among the one health domains. antibiotics. https://doi.org/10.
3390/antibiotics10040385

Garg et al. (2022). pygetpapers: a Python library for automated retrieval of scientific literature. Journal of Open Source Software, 7(75), 4451.
https://doi.org/10.21105/joss.04451.

7

https://pdfbox.apache.org/
https://github.com/petermr/docanalysis
https://github.com/kermitt2/grobid
https://doi.org/10.1007/s11192-009-0146-3
https://github.com/petermr/pyami/
https://github.com/petermr/pyamiimage
https://github.com/ContentMine/getpapers
https://www.niso.org/standards-committees/jats%20.
https://doi.org/10.3390/antibiotics10040385
https://doi.org/10.3390/antibiotics10040385
https://doi.org/10.21105/joss.04451

	Summary
	Statement of Need
	pygetpapers

	Overview of the architecture
	Data
	raw data
	derived data

	Code
	Download protocol

	Generic downloading concerns
	Design
	Implementation
	core
	repository interfaces

	Interface with other tools
	Acknowledgements
	Contribution statement
	References

