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Introduction
The method of surrogate data is a way to generate data that preserve one or more statistical
or dynamical properties of a given timeseries, but are otherwise randomized. Surrogate time
series methods have widespread use in null hypothesis testing in nonlinear dynamics, for null
hypothesis testing in causal inference, or for the more general case of producing synthetic data
with similar statistical properties as an original signal. Originally introduced by Theiler et al.
(1992) to test for nonlinearity in time series, numerous surrogate methods aimed preserving
different properties of the original signal have since emerged; for a review, see Lancaster et al.
(2018).

A simple example of an application of surrogates would be to distinguish whether a given
timeseries x can be represented via a linear noise process, or not. The latter case can be an
indication that the timeseries may represent deterministic nonlinear dynamics with additional
noise. A simple way to test for this hypothesis would be to generate new timeseries from
x that conserve the power spectrum of x (which is a defining feature of linear stochastic
processes). Then, a discriminatory statistic, such as the correlation dimension or the auto-
mutual-information (Lancaster et al., 2018) is computed for x, but also for thousands of
surrogates from x. The discriminatory statistic of the surrogates provides a distribution of
possible values, and if the value for x is well within the distribution spread, then x satisfies the
null hypothesis (here, that x can be approximated as a linear stochastic process).

Statement of need
Surrogate data has been used in several thousand publications so far (the citation number of
Theiler et al. (1992) is more than 4,000) and hence the community is in clear need of such
methods. Existing software packages for surrogate generation provide much fewer methods
than available in the literature, with less-than optimal performance (see Comparison section
below), and without allowing reproducible generation of surrogates. TimeseriesSurrogates.jl
provides more than double the amount of methods given by other packages, with runtimes
similar to and up to an order of magnitude faster than existing surrogate packages in other
languages. Equally importantly, TimeseriesSurrogates.jl provides a framework that is tested
via continuous integration, and is easy to extend via open source contributions.

Available surrogate methods
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Method Description Reference
AutoRegressive Autoregressive model based

surrogates.
RandomShuffling Random shuffling of

individual data points.
Theiler et al. (1992)

BlockShuffle Random shuffling of blocks
of data points.

Theiler et al. (1992)

CircShift Circularly shift the signal.
RandomFourier Randomization of phases of

Fourier transform of the
signal.

Theiler et al. (1992)

PartialRandomization Fourier randomization, but
tuning of the “degree” of
randomization.

Ortega & Louis (1998)

PartialRandomizationAAFT Partial Fourier randomization,
but rescaling back to original
values.

This paper.

CycleShuffle Randomization of phases of
Fourier transform of the
signal.

Theiler (1994)

ShuffleDimensions Circularly shift the signal. This paper.
AAFT Amplitude adjusted

RandomFourier.
Theiler et al. (1992)

IAAFT Iterative amplitude adjusted
RandomFourier.

Schreiber & Schmitz (1996)

TFTS Truncated Fourier transform
surrogates.

Miralles et al. (2015)

TAAFT Truncated AAFT surrogates. Nakamura et al. (2006)
TFTDRandomFourier Detrended and retrended

truncated Fourier surrogates.
Lucio et al. (2012)

TFTDAAFT Detrended and retrended
truncated AAFT surrogates.

Lucio et al. (2012)

TFTDIAAFT Detrended and retrended
truncated AAFT surrogates
with iterative adjustment.

Lucio et al. (2012)

WLS Flexible wavelet-based
methods using maximal
overlap discrete wavelet
transforms.

Keylock (2006)

RandomCascade Random cascade multifractal
surrogates.

Paluš (2008)

WIAAFT Wavelet-based iterative
amplitude adjusted
transforms.

Keylock (2006)

PseudoPeriodic Randomization of phases of
Fourier transform of the
signal.

Small et al. (2001)

PseudoPeriodicTwin Combination of
pseudoperiodic and twin
surrogates.

Miralles et al. (2015)

LS Lomb-Scargle periodogram
based surrogates for irregular
time grids

Schmitz & Schreiber (1999)
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Documentation strings for the various methods describe the usage intended by the original
authors of the methods. Example applications are showcased in the package documentation.

Design of TimeseriesSurrogates.jl
TimeseriesSurrogates.jl has been designed to be as performant as possible and as simple to
extend as possible.

At a first level, we offer a function

using TimeseriesSurrogates, Random

method = RandomShuffle() # can be any valid method

rng = MersenneTwister(1234) # optional random number generator

s = surrogate(x, method, rng)

which creates a surrogate s based on the input x and the given method (any of the methods
mentioned in the above table).

This interface is easily extendable because it uses Julia’s multiple dispatch on the given method.
Thus, any new contribution of a new method uses the exact same interface, but introduces a
new method type, e.g.

m = NewContributedMethod(args...)

s = surrogate(x, method, rng)

The function surrogate is straight-forward to use, but it does not allow maximum performance.
The reason for this is that when trying to make a second surrogate from x and the same
method, there are many structures and computations that could be pre-initialized and/or
reused for all surrogates. This is especially relevant for real-world applications where one
typically makes thousands of surrogates with a given method. To address this, we provide
a second level of interface, the surrogenerator function. It works as follows: first the user
initializes a “surrogate generator” structure:

method = RandomShuffle()

sg = surrogenerator(x, method, rng)

The structure sg can generate surrogates of x on demand in the most performant manner
possible for the given inputs x, method. It can be used like so:

for i in 1:100

s = sg() # generate a surrogate

# code...

end

Comparison
The average time to generate surrogates in TimeseriesSurrogates.jl is in the best case about
an order of magnitude faster than, and in the worst case roughly equivalent to, the MATLAB
surrogate code provided by Lancaster et al. (2018), though comparisons are not exact, due to
differing implementations and tuning options. Moreover, the code of Lancaster et al. (2018)
is not an actual package, but rather scripts that have been written and circulated. As such,
they lack a test suite tested via continuous integration. Timings for commonly used surrogate
methods that are common to both libraries are shown in Figure 1. Additionally, because
TimeseriesSurrogates.jl provides many more methods not implemented in other packages, a
comprehensive comparison of runtimes is not possible, but due to our optimized surrogate
generators, we expect good performance relative to future implementations in other languages.
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Figure 1: Figure 1: Mean time (in seconds, based on 500 surrogate time series realizations) to generate
a 2000-point random permutation (rp), Fourier transform (ft), amplitude-adjusted Fourier transform
(aaft), iterated aaft (iaaft) and pseudoperiodic (pps) surrogate using a pre-initialized generators with
default parameters, and using a maximum of 100 iterations for the IAAFT algorithm. MATLAB timings
are generated using the code provided by Lancaster et al. (2018). Note: timings for the pseudoperiodic
surrogates in MATLAB include embedding lag and dimension finding, which has been included in the
preprocessing step in the Julia version. Scripts to reproduce Julia and MATLAB timings are available in
the GitHub repo for this paper.
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