The Journal of Open Source Software

DOI: 10.21105/joss.04338

Software
= Review 7
= Repository &
= Archive @7

Editor: Adi Singh @&
Reviewers:

= Qtuliofalmeida

= Ofinsberg

Submitted: 08 March 2022
Published: 26 May 2022

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

imucal - A Python library to calibrate 6 DOF IMUs

Arne Kiiderle ®'9, Nils Roth ®!, Robert Richer ®!, and Bjoern M.
Eskofier ©1

1 Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in
Biomedical Engineering (AIBE), Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU)
Corresponding author

Summary

Inertial measurement units (IMUs) have wide application areas from human movement analysis
to commercial drone navigation. However, to use modern micro-electromechanical systems
(MEMS)-based IMUs a calibration is required to transform the raw output of the sensor
into physically meaningful units. To obtain such calibrations one needs to perform sets of
predefined motions with the sensor unit and then apply a calibration algorithm to obtain the
required transformation and correction factors for this unit. The imucal library implements the
calibration algorithm described by Ferraris et al. (F. Ferraris et al., 1994; Franco Ferraris et al.,
1995) and provides functionality to calculate calibration parameters and apply them to new
measurements. As typically multiple calibrations are recorded per sensor over time, imucal
further provides a set of opinionated tools to save, organize, and retrieve recorded calibrations.
This helps to make sure that always the best possible calibration is applied for each recording
even when dealing with multiple sensors and dozens of measurements.

Statement of Need

When working with MEMS-based IMUs, calibrations are required to correct sensor errors like bias,
scaling, or non-orthogonality of the included gyroscope and accelerometer as well as to transform
the raw sensor output into physical units. While out-of-the-box factory calibrations and self-
calibration procedures have become better over the past years, high precision applications still
benefit from manual calibrations temporally close to the measurement itself. This is because
the parameters of the sensor can change because of the soldering process, change in humidity,
or temperature. Also, it could simply change over time as the silicon ages. Various algorithms
and protocols exist to tackle this issue. To calibrate the accelerometer, most of them require
the sensor unit to be placed in multiple well-defined orientations relative to gravity. To calibrate
the gyroscope, the sensor is required to be rotated either with known angular rate or by a
known degree. From the data recorded in the different phases of the calibrations, the correction
and transformation parameters for a specific sensor can be calculated.

While multiple of these procedures have been published in literature, for example (F. Ferraris
et al., 1994, Kozlov et al., 2014; Qureshi & Golnaraghi, 2017; Scapellato et al., 2005; Skog &
Handel, 2006; Tedaldi et al., 2014; Zhang et al., 2009), no high-quality code implementations
are available for most of them. Existing implementations that can be found on the internet are
usually “one-off” scripts that would require adaptation and tinkering to make them usable for
custom use cases. Further, many practical aspects of calibrating IMUs, like which information
needs to be stored to make sure that a calibration can be correctly applied to a new recording,
are usually not discussed in research papers or are not easily available online.

Hence, well-maintained reference implementations of algorithms, clear guidelines, and informal
guides are needed to make the procedure of creating and using calibrations easier.

Kiiderle et al. (2022). imucal - A Python library to calibrate 6 DOF IMUs. Journal of Open Source Software, 7(73), 4338. https: 1

//doi.org/10.21105 /joss.04338.


https://orcid.org/0000-0002-5686-281X
https://orcid.org/0000-0002-9166-3920
https://orcid.org/0000-0003-0272-5403
https://orcid.org/0000-0002-0417-0336
https://doi.org/10.21105/joss.04338
https://github.com/openjournals/joss-reviews/issues/4338
https://github.com/mad-lab-fau/imucal
https://doi.org/10.17605/OSF.IO/37TD9
https://www.linkedin.com/in/adisin/
https://orcid.org/0000-0002-6382-8441
https://github.com/tuliofalmeida
https://github.com/finsberg
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04338
https://doi.org/10.21105/joss.04338

The Journal of Open Source Software

Provided Functionality

With imucal and its documentation, we address all the above needs and hope to even further
expand on that in the future based on community feedback. The library provides a sensor-
agnostic object-oriented implementation of the calibration algorithm by Ferraris et al. Franco
Ferraris et al. (1995) and functionality to apply it to new data. Further, we provide a simple
GUI interface to annotate recorded calibration sessions (Figure 1).

R e Calibration Gui - o x

Use this plot to find the static regions for acc calibration

LT
R

o 2000 4000 6000 8000 10000

i 1
Use this plot to find the singlérre‘aex[lz rotations for gyro calibration

500 1

250 1
\
] ! ]

—250 1 +

—-500

750 1

o 2000 4000 6000 8000 10000
time [s]

Figure 1: Screenshot of the GUI to annotate recorded Ferraris sessions. Each region corresponds to
one of the required static positions or rotations. The annotation is performed using the mouse with
support for keyboard shortcuts to speed up some interactions.

When working with sensors and multiple calibrations, storing and managing them can become
complicated. Therefore, imucal also implements a set of opinionated helpers to store the
calibrations and required metadata as .json files and functions to retrieve them based on sensor
ID, date, type of calibration, or custom metadata.

While imucal itself only implements a single calibration algorithm so far, all tools in the
library have been designed with the idea of having multiple algorithms in mind. Therefore,
the provided structure and base classes should provide a solid basis to implement further
algorithms, either as part of the library itself or as part of custom software packages.

To ensure that all the provided tools are usable, the documentation contains full guides on how
to practically perform the calibration and then use imucal to process the recorded sessions.
As much as possible, these guides include informal tips to avoid common pitfalls.

The imucal library has been used extensively in the background of all movement research at
the Machine Learning and Data Analytics Lab (MaD Lab) to calibrate our over 100 custom
and commercial IMU sensors. Therefore, we hope this library can bring similar value to research
groups working on IMU-related topics.

Availability

The software is available as a pip installable package (pip install imucal) and via GitHub.
Documentation can be found on Read the Docs.

Kiiderle et al. (2022).
//doi.org/10.21105 /joss.04338.

imucal - A Python library to calibrate 6 DOF IMUs.

Journal of Open Source Software, 7(73), 4338. https: 2


https://github.com/mad-lab-fau/imucal
https://imucal.readthedocs.io/
https://doi.org/10.21105/joss.04338
https://doi.org/10.21105/joss.04338

The Journal of Open Source Software

Acknowledgments

imucal was developed to solve the chaos of random calibration scripts, old calibrations in
unknown formats on shared folders, and general uncertainty when it came to calibrating or
finding calibrations for one of the hundreds of self-build or off-the-shelf IMU units at the MaD
Lab. Therefore, we would like to thank all members of the team and our students for their
feedback and suggestions when working with the library.

Ferraris, F., Gorini, I., Grimaldi, U., & Parvis, M. (1994). Calibration of three-axial rate gyros
without angular velocity standards. Sensors and Actuators A: Physical, 42(1-3), 446-449.
https://doi.org/10.1016/0924-4247(94)80031-6

Ferraris, Franco, Grimaldi, U., & Parvis, M. (1995). Procedure for effortless in-field calibration
of three-axial rate gyro and accelerometers. Sensors and Materials, 7(5), 311-330. https:
//myukk.org/SM2017 /article.php?ss=10210

Kozlov, A., Sazonov, |., & Vavilova, N. (2014). IMU calibration on a low grade turntable:
Embedded estimation of the instrument displacement from the axis of rotation. 2014
International Symposium on Inertial Sensors and Systems (ISISS), 1-4. https://doi.org/
10.1109/1S1SS.2014.6782525

Qureshi, U., & Golnaraghi, F. (2017). An Algorithm for the In-Field Calibration of a MEMS IMU.
IEEE Sensors Journal, 17(22), 7479-7486. https://doi.org/10.1109/JSEN.2017.2751572

Scapellato, S., Cavallo, F., Martelloni, C., & Sabatini, A. M. (2005). In-use calibration
of body-mounted gyroscopes for applications in gait analysis. Sensors and Actuators A:
Physical, 123-124, 418-422. https://doi.org/10.1016/j.sna.2005.03.052

Skog, I., & Héndel, P. (2006). Calibration of a MEMS inertial measurement unit. In Proc.
XVII IMEKO WORLD CONGRESS, (Rio de Janeiro.

Tedaldi, D., Pretto, A., & Menegatti, E. (2014). A robust and easy to implement method
for IMU calibration without external equipments. 2014 IEEE International Conference
on Robotics and Automation (ICRA), 3042-3049. https://doi.org/10.1109/ICRA.2014.
6907297

Zhang, H., Wu, Y., Wu, W., Wu, M., & Hu, X. (2009). Improved multi-position calibration
for inertial measurement units. Measurement Science and Technology, 21(1), 015107.
https://doi.org/10.1088/0957-0233/21/1/015107

Kiiderle et al. (2022). imucal - A Python library to calibrate 6 DOF IMUs. Journal of Open Source Software, 7(73), 4338. https: 3

//doi.org/10.21105 /joss.04338.


https://doi.org/10.1016/0924-4247(94)80031-6
https://myukk.org/SM2017/article.php?ss=10210
https://myukk.org/SM2017/article.php?ss=10210
https://doi.org/10.1109/ISISS.2014.6782525
https://doi.org/10.1109/ISISS.2014.6782525
https://doi.org/10.1109/JSEN.2017.2751572
https://doi.org/10.1016/j.sna.2005.03.052
https://doi.org/10.1109/ICRA.2014.6907297
https://doi.org/10.1109/ICRA.2014.6907297
https://doi.org/10.1088/0957-0233/21/1/015107
https://doi.org/10.21105/joss.04338
https://doi.org/10.21105/joss.04338

	Summary
	Statement of Need
	Provided Functionality
	Availability
	Acknowledgments

