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Summary
Atmospheric carbon dioxide (CO2) plays a key role in the global carbon cycle and global
warming. Climate-carbon feedbacks are often studied and estimated using Earth System
Models (ESMs), which couple together multiple model components—including the atmosphere,
ocean, terrestrial biosphere, and cryosphere—to jointly simulate mass and energy exchanges
within and between these components. Despite tremendous advances, model intercomparisons
and benchmarking are aspects of ESMs that warrant further improvement (Fer et al., 2021;
Smith et al., 2014). Such benchmarking is critical because comparing the value of state variables
in these simulations against observed values provides evidence for appropriately refining model
components; moreover, researchers can learn much about Earth system dynamics in the process
(Randall et al., 2019).

We introduce gdess (a.k.a., Greenhouse gas Diagnostics for Earth System Simulations), which
parses observational datasets and ESM simulation output, combines them to be in a consistent
structure, computes statistical metrics, and generates diagnostic visualizations. In its current
incarnation, gdess facilitates evaluating a model’s ability to reproduce observed temporal
and spatial variations of atmospheric CO2. The diagnostics implemented modularly in gdess

support more rapid assessment and improvement of model-simulated global CO2 sources and
sinks associated with land and ocean ecosystem processes. We intend for this set of automated
diagnostics to form an extensible, open source framework for future comparisons of simulated
and observed concentrations of various greenhouse gases across Earth system models.

Statement of need
Thorough evaluation of simulated atmospheric CO2 concentrations—by comparing against
observations—requires multiple diagnostics, metrics, and visualizations. During the past
decade, such evaluations have utilized certain common methods, such as aggregating in situ
measurements into latitude bands and detrending of multidecadal time series to investigate
seasonal cycles (Chevallier et al., 2019; Jing et al., 2018; Keppel-Aleks et al., 2013; Liptak et
al., 2017; Ott et al., 2015; Weir et al., 2021). However, the construction of diagnostics used
in these evaluations has not been automated in an open-source tool available to the broader
atmospheric modeling community. Thus, each modeling or analysis team has had to decide
on and code their own preferred set of diagnostics, resulting in redundancies and potential
inconsistencies among efforts.

Several software packages have been developed to streamline the application of diagnostics for
ESM benchmarking. These tools share related functionality with gdess, and some have directly
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inspired the gdess design and our development approach. For example, the ESM Evaluation
Tool (ESMValTool; Eyring, Righi, et al. (2016); Eyring et al. (2020)) has been used to generate
specific figures from the literature, and we adopted the term recipe from its use by ESMValTool.
Although ESMValTool includes a comparison of column-averaged CO2 values as performed by
Gier et al. (2020), gdess was created to provide specific CO2 diagnostic methods and graphs
that are not already provided as recipes in ESMValTool. gdess uses Observation Package
(Obspack; Schuldt et al. (2020); Masarie et al. (2014)) data, which include atmospheric
greenhouse gas observations from a variety of sampling platforms and data providers following
the World Data Centre for Greenhouse Gases (WDCGG) protocol, so are widely used for
stimulating and supporting carbon cycle modeling studies. These data have not been set up
for use within ESMValTool, and as such would require additional development/configuration
to work with ESMValTool. The International Land Model Benchmarking (ILAMB) System
(Collier et al., 2018) excels at intercomparisons between multiple land models and has been
used to benchmark inferred CO2 concentrations against surface station measurements (Wu et
al., 2020). In contrast to gdess, ILAMB provides the means to evaluate emulated results but
not prognostic simulations for CO2 (Keppel-Aleks, 2021).

Design and data sources
gdess is written in Python [“version 3”; Python Core Team (2015); Van Rossum & Drake
(2009)]. A comprehensive readme file and docstrings throughout the open source codebase
(https://github.com/E3SM-Project/gdess) provide documentation and guidance, and Continu-
ous Integration tests facilitate further code development and maintenance. Data variables are
represented and handled in memory using xarray, an open-source Python package for working
with labeled multi-dimensional arrays (Hoyer & Hamman, 2017).

As shown in Figure 1, gdess is organized into modular components. A Collection class
encapsulates source-specific attributes and methods for each data source (described below)
and each Collection inherits common attributes from a parent Multiset class. Each diagnostic
recipe, defined in a separate module file (e.g., surface_trends.py), instantiates and uses
Collection objects to handle the loading and pre-processing of data. Additionally, visualization
functions (e.g., time-series, annual cycles) are accessible from any instance of a Collection or
Multiset so that data sources can be inspected individually—i.e., without the need to run one
of the comparative diagnostic recipes.

Figure 1: Schematic of the gdess code structure.

gdess can process data from three sources: Globalview+, CMIP, and E3SM. Data from surface
observing stations must be retrieved from the NOAA Global Monitoring Laboratory (GML)
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Globalview+ version 6.0 Observation package (Obspack; Schuldt et al. (2020); Masarie et al.
(2014)). In situ and flask measurements can be used from approximately 200 stations whose
data in Obspack spans at least a 12 month period (Figure 2).

Figure 2: Global map showing surface observing station locations (red circles) and their three-letter site
codes, as recorded in Obspack and used in gdess.

We distinguish between the model results from two different sources: (i) simulations by the
Energy Exascale Earth System Model (E3SM), and (ii) other Earth system models participating
in the latest, Version 6, Coupled Model Intercomparison Project (CMIP6). E3SM is a global
modeling system composed of multiple coupled subcomponent models: atmosphere, ocean,
land, ice (Burrows et al., 2020; Golaz et al., 2019). In this study, our focus is on evaluating
CO2 mole fractions in the atmospheric component, which is called the E3SM atmosphere
model (EAM) and which has been described in detail by Rasch et al. (2019).

CMIP6 organizes the setup, experimental design, and intercomparisons of simulations performed
using numerous global climate models. Data from CMIP6 are accessed either via locally
stored files—downloaded directly from Earth System Grid Federation (ESGF) data nodes—or
programmatically via the intake-esm package, which is a gdess dependency maintained as
part of the Pangeo project. By default, comparisons in gdess use data from the ‘esm-hist’
experiment, which contains CO2 emission-driven simulations that span the period of 1850 to
2014—i.e., an “all-forcing simulation of the recent past with atmospheric CO2 concentration
calculated” (Eyring, Bony, et al., 2016). We expect model output from any CMIP6 experiment
could be used by specifying the appropriate data identifier or file location, although additional
testing would be needed to confirm expected behavior.

Functionality
This section describes and provides example output from the three diagnostic recipes imple-
mented in gdess. These recipes can be initiated either from a terminal or from within a
running Python kernel. The command-line interface consists of the gdess command, followed
by the type of recipe, and then options for each recipe—e.g., which observing station(s) to
use for comparison. Within a Python kernel, options are specified via a dictionary object.

Multidecadal trend

Skillful simulation of the historical multidecadal trend in atmospheric CO2 is a necessary
condition for an ESM to be an effective tool for conducting climatological projections and
analyses. The research questions one might address with this diagnostic recipe (see example
output in Figure 3) include: What are the long-term biases in the model simulation? How
does the simulated increase in CO2 mixing ratios compare to surface measurements?
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(a) (b)

Figure 3: Example output of the surface_trends recipe, showing (a) individual time series and (b)
differences between simulated and observed concentrations of surface-level atmospheric CO2 at the
Mauna Loa Observatory, Hawaii (MLO).

Seasonal cycle

Because of the substantial impact primary production and respiration have on CO2 concen-
trations, evaluating the seasonal cycle at a given location can help disentangle the effects of
biological from physical processes. The seasonal cycle can be quantified by “the projection of
an atmospheric time series onto a suitably defined subset of orthogonal basis functions, the
choice of which depends on the length of the series involved” (Straus, 1983). For computing
the seasonal cycle, we detrend the time series by fitting a function composed of both polynomial
and harmonic terms, following the procedure of Sweeney et al. (2015) and originally proposed
by Thoning & Tans (1989). Example output of the seasonal cycle recipe is shown in Figure 4.

Figure 4: Example output of the seasonal_cycle recipe, comparing annual climatologies of surface
atmospheric CO2 concentrations at the American Samoa Observatory, Tutuila Island (SMO).

Meridional gradient

By comparing CO2 concentrations across observing sites distributed globally, we can assess
whether simulated transport and mixing is skillfully reproducing spatial gradients. For instance,
the surface CO2 flux signals at lower latitudes (30-45N) are moved to northern boreal latitudes
and also to the south by large scale circulation. Spatial analysis can reveal evidence of southward
movement toward (sub)tropical convection that becomes mixed with Hadley circulation or
northward movement toward midlatitude synoptic weather patterns and the Ferrell circulation
(Denning et al., 1999; Schuh et al., 2019; Stephens et al., 2007). Figure 5 shows example
output of the meridional recipe.
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Figure 5: Example output of the meridional recipe, comparing the seasonal cycle across latitudes, at
locations of user-specified surface stations.

Outlook
Currently, gdess is helping to assess simulations using the biogeochemistry configuration
of E3SM, with the aim of exploring carbon-climate interactions. In addition to the three
implemented recipes (multidecadal trends, seasonal cycles, and meridional gradients), current
development includes two other methods—by which CO2 was also evaluated by Keppel-Aleks
et al. (2013)—vertical gradients and interannual variability. Future releases may evaluate
vertical gradients using aircraft data from Globalview+ Obspack, include satellite data, and
extend to data for other greenhouse gases, such as methane.

Acknowledgements
We thank Drs. Colm Sweeney and Kirk Thoning, at the NOAA Global Monitoring Laboratory,
for providing code and support for implementing the curve fitting methods. A dataset file
provided via the Obspack from the Mauna Loa surface observing station is included in the tests
directory with permission from the data provider, Keeling et al. (2001). This research was
supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the
U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental
Research. Data analysis described in this work relied on computational resources provided
by the National Energy Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of Energy under Contract
DE-AC02-05CH11231. The Pacific Northwest National Laboratory (PNNL) is operated for
DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO1830.

Author contributions
D.K., K.C., B.H., and S.B. initially conceived the study. D.K. was the main code contributor of
the gdess software and wrote the initial version of the paper. S.F. contributed to code testing.
S.F., B.H., and S.B. ideated the experiment examples and priorities. All authors discussed
the results, commented, and contributed to writing of the final version of the paper. K.C.
supervised the study.

Kaufman et al. (2022). gdess: A framework for evaluating simulated atmospheric CO2 in Earth System Models. Journal of Open Source Software,
7(76), 4326. https://doi.org/10.21105/joss.04326.

5

https://doi.org/10.21105/joss.04326


References
Burrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., Ricciuto, D., Wang,

S., Bisht, G., Tang, J., Wolfe, J., Harrop, B. E., Singh, B., Brent, L., Baldwin, S.,
Zhou, T., Cameron-Smith, P., Keen, N., Collier, N., … Leung, L. R. (2020). The DOE
E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystem-Climate
Responses to Historical Changes in Forcing. J. Adv. Model. Earth Syst., 12(9), 1–59.
https://doi.org/10.1029/2019MS001766

Chevallier, F., Remaud, M., O’Dell, C. W., Baker, D., Peylin, P., & Cozic, A. (2019). Objective
evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos.
Chem. Phys., 19(22), 14233–14251. https://doi.org/10.5194/acp-19-14233-2019

Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W.
J., Mu, M., & Randerson, J. T. (2018). The International Land Model Benchmarking
(ILAMB) System: Design, Theory, and Implementation. J. Adv. Model. Earth Syst.,
10(11), 2731–2754. https://doi.org/10.1029/2018MS001354

Denning, A. S., Holzer, M., Gurney, K. R., Heimann, M., Law, R. M., Rayner, P. J., Fung, I.
Y., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M., & Levin,
I. (1999). Three-dimensional transport and concentration of SF6 A model intercomparison
study (TransCom 2). Tellus B: Chemical and Physical Meteorology, 51(2), 266–297.
https://doi.org/10.3402/tellusb.v51i2.16286

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O.,
Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., L. Davin, E., Davini, P., Debeire, K., De
Mora, L., Deser, C., Docquier, D., Earnshaw, P., … Zimmermann, K. (2020). Earth System
Model Evaluation Tool (ESMValTool) v2.0 - An extended set of large-scale diagnostics for
quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci.
Model Dev., 13(7), 3383–3438. https://doi.org/10.5194/gmd-13-3383-2020

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K.
E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization. Geosci. Model Dev., 9(5), 1937–1958. https:
//doi.org/10.5194/gmd-9-1937-2016

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews,
O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P.,
Gottschaldt, K. D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., … Williams, K.
D. (2016). ESMValTool (v1.0)-a community diagnostic and performance metrics tool for
routine evaluation of Earth system models in CMIP. Geosci. Model Dev., 9(5), 1747–1802.
https://doi.org/10.5194/gmd-9-1747-2016

Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., De Kauwe, M.
G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K. D., Hoffman, F. M., Johnston,
M. R., Kooper, R., LeBauer, D. S., Mantooth, J., Parton, W. J., Poulter, B., Quaife, T.,
Raiho, A., … Dietze, M. C. (2021). Beyond ecosystem modeling: A roadmap to community
cyberinfrastructure for ecological data-model integration. Global Change Biology, 27(1),
13–26. https://doi.org/10.1111/gcb.15409

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,
Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht,
G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M.,
Cameron-Smith, P. J., Donahue, A. S., … Zhu, Q. (2019). The DOE E3SM Coupled
Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in
Modeling Earth Systems, 11(7), 2089–2129. https://doi.org/10.1029/2018MS001603

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334/jors.148

Kaufman et al. (2022). gdess: A framework for evaluating simulated atmospheric CO2 in Earth System Models. Journal of Open Source Software,
7(76), 4326. https://doi.org/10.21105/joss.04326.

6

https://doi.org/10.1029/2019MS001766
https://doi.org/10.5194/acp-19-14233-2019
https://doi.org/10.1029/2018MS001354
https://doi.org/10.3402/tellusb.v51i2.16286
https://doi.org/10.5194/gmd-13-3383-2020
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1747-2016
https://doi.org/10.1111/gcb.15409
https://doi.org/10.1029/2018MS001603
https://doi.org/10.5334/jors.148
https://doi.org/10.21105/joss.04326


Jing, Y., Wang, T., Zhang, P., Chen, L., Xu, N., & Ma, Y. (2018). Global atmospheric
CO2 concentrations simulated by GEOS-Chem: Comparison with GOSAT, carbon tracker
and ground-based measurements. Atmosphere (Basel)., 9(5). https://doi.org/10.3390/
atmos9050175

Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., &
Meijer, H. A. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial
biosphere and oceans from 1978 to 2000. I. Global aspects (S. D. Scripps Institution
of Oceanography, Ed.; No. 01-06; p. 88). UC San Diego: Library – Scripps Digital.
https://escholarship.org/uc/item/09v319r9

Keppel-Aleks, G. (2021). personal communication.

Keppel-Aleks, G., Randerson, J. T., Lindsay, K., Stephens, B. B., Keith Moore, J., Doney, S. C.,
Thornton, P. E., Mahowald, N. M., Hoffman, F. M., Sweeney, C., Tans, P. P., Wennberg, P.
O., & Wofsy, S. C. (2013). Atmospheric carbon dioxide variability in the community earth
system model: Evaluation and transient dynamics during the twentieth and twenty-first
centuries. J. Clim., 26(13), 4447–4475. https://doi.org/10.1175/JCLI-D-12-00589.1

Liptak, J., Keppel-Aleks, G., & Lindsay, K. (2017). Drivers of multi-century trends in the
atmospheric CO2 mean annual cycle in a prognostic ESM. Biogeosciences, 14(6), 1383–1401.
https://doi.org/10.5194/bg-14-1383-2017

Masarie, K. A., Peters, W., Jacobson, A. R., & Tans, P. P. (2014). ObsPack: A framework for
the preparation, delivery, and attribution of atmospheric greenhouse gas measurements.
Earth Syst. Sci. Data, 6(2), 375–384. https://doi.org/10.5194/essd-6-375-2014

Ott, L. E., Pawson, S., Collatz, G. J., Gregg, W. W., Menemenlis, D., Brix, H., Rousseaux, C.
S., Bowman, K. W., Liu, J., Eldering, A., Gunson, M. R., & Kawa, S. R. (2015). Assessing
the magnitude of CO 2 flux uncertainty in atmospheric CO 2 records using products from
NASA’s Carbon Monitoring Flux Pilot Project. J. Geophys. Res. Atmos., 120(2), 734–765.
https://doi.org/10.1002/2014JD022411

Python Core Team. (2015). Python: A dynamic, open source programming language. Python
Software Foundation. https://www.python.org/

Randall, D. A., Bitz, C. M., Danabasoglu, G., Denning, A. S., Gent, P. R., Gettelman,
A., Griffies, S. M., Lynch, P., Morrison, H., Pincus, R., & Thuburn, J. (2019). 100
Years of Earth System Model Development. Meteorol. Monogr., 59, 12.1–12.66. https:
//doi.org/10.1175/amsmonographs-d-18-0018.1

Rasch, P. J., Xie, S., Ma, P. L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P.,
Zhang, K., Easter, R. C., Cameron-Smith, P., Singh, B., Wan, H., Golaz, J. C., Harrop,
B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., … Yang, Y. (2019). An
Overview of the Atmospheric Component of the Energy Exascale Earth System Model. J.
Adv. Model. Earth Syst., 11(8), 2377–2411. https://doi.org/10.1029/2019MS001629

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier,
F., Crowell, S., Davis, K. J., Deng, F., Denning, S., Feng, L., Jones, D., Liu, J., &
Palmer, P. I. (2019). Quantifying the Impact of Atmospheric Transport Uncertainty on
CO2 Surface Flux Estimates. Global Biogeochemical Cycles, 33(4), 484–500. https:
//doi.org/10.1029/2018GB006086

Schuldt, K. N., Mund, J., Luijkx, I. T., Jacobson, A. R., Cox, A., Vermeulen, A., Manning,
A., Beyersdorf, A., Manning, A., Karion, A., Hensen, A., Arlyn Andrews, Frumau, A.,
Colomb, A., Scheeren, B., Law, B., Baier, B., Munger, B., Paplawsky, B., … Loh, Z. (2020).
Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2019;
obspack_co2_1_GLOBALVIEWplus_v6.0_2020-09-11. NOAA Earth System Research
Laboratory, Global Monitoring Division. https://doi.org/10.25925/20200903

Kaufman et al. (2022). gdess: A framework for evaluating simulated atmospheric CO2 in Earth System Models. Journal of Open Source Software,
7(76), 4326. https://doi.org/10.21105/joss.04326.

7

https://doi.org/10.3390/atmos9050175
https://doi.org/10.3390/atmos9050175
https://escholarship.org/uc/item/09v319r9
https://doi.org/10.1175/JCLI-D-12-00589.1
https://doi.org/10.5194/bg-14-1383-2017
https://doi.org/10.5194/essd-6-375-2014
https://doi.org/10.1002/2014JD022411
https://www.python.org/
https://doi.org/10.1175/amsmonographs-d-18-0018.1
https://doi.org/10.1175/amsmonographs-d-18-0018.1
https://doi.org/10.1029/2019MS001629
https://doi.org/10.1029/2018GB006086
https://doi.org/10.1029/2018GB006086
https://doi.org/10.25925/20200903
https://doi.org/10.21105/joss.04326


Smith, M. J., Palmer, P. I., Purves, D. W., Vanderwel, M. C., Lyutsarev, V., Calderhead,
B., Joppa, L. N., Bishop, C. M., & Emmott, S. (2014). Changing How Earth System
Modeling is Done to Provide More Useful Information for Decision Making, Science,
and Society. Bulletin of the American Meteorological Society, 95(9), 1453–1464. https:
//doi.org/10.1175/BAMS-D-13-00080.1

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P.,
Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko,
N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langenfelds, R. L., … Denning, A.
S. (2007). Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles
of Atmospheric CO2. Science, 316(5832), 1732–1735. https://doi.org/10.1126/science.
1137004

Straus, D. M. (1983). On the Role of the Seasonal Cycle. Journal of Atmospheric Sciences,
40(2), 303–313. https://doi.org/10.1175/1520-0469(1983)040%3C0303:OTROTS%3E2.0.
CO;2

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Andrews, A.
E., Lang, P. M., Neff, D., Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R.,
Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., Crotwell, A. M., Thoning, K.,
& Tans, P. P. (2015). Seasonal climatology of CO 2 across North America from aircraft
measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. J. Geophys.
Res. Atmos., 120(10), 5155–5190. https://doi.org/10.1002/2014JD022591

Thoning, K. W., & Tans, P. P. (1989). Atmospheric carbon dioxide at Mauna Loa Observatory.
2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res., 94(D6), 8549–8565.
https://doi.org/10.1029/JD094iD06p08549

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.
ISBN: 1441412697

Weir, B., Ott, L. E., Collatz, G. J., Kawa, S. R., Poulter, B., Chatterjee, A., Oda, T., &
Pawson, S. (2021). Bias-correcting carbon fluxes derived from land-surface satellite data for
retrospective and near-real-time assimilation systems. Atmospheric Chemistry and Physics,
21(12), 9609–9628. https://doi.org/10.5194/acp-21-9609-2021

Wu, G., Cai, X., Keenan, T. F., Li, S., Luo, X., Fisher, J. B., Cao, R., Li, F., Purdy, A. J.,
Zhao, W., Sun, X., & Hu, Z. (2020). Evaluating three evapotranspiration estimates from
model of different complexity over China using the ILAMB benchmarking system. Journal
of Hydrology, 590, 125553. https://doi.org/10.1016/j.jhydrol.2020.125553

Kaufman et al. (2022). gdess: A framework for evaluating simulated atmospheric CO2 in Earth System Models. Journal of Open Source Software,
7(76), 4326. https://doi.org/10.21105/joss.04326.

8

https://doi.org/10.1175/BAMS-D-13-00080.1
https://doi.org/10.1175/BAMS-D-13-00080.1
https://doi.org/10.1126/science.1137004
https://doi.org/10.1126/science.1137004
https://doi.org/10.1175/1520-0469(1983)040%3C0303:OTROTS%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040%3C0303:OTROTS%3E2.0.CO;2
https://doi.org/10.1002/2014JD022591
https://doi.org/10.1029/JD094iD06p08549
https://doi.org/10.5194/acp-21-9609-2021
https://doi.org/10.1016/j.jhydrol.2020.125553
https://doi.org/10.21105/joss.04326

	Summary
	Statement of need
	Design and data sources
	Functionality
	Outlook
	Acknowledgements
	Author contributions
	References

