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Summary
Improvements in sequencing technologies have seen the amount of available genomic data
expand considerably over the last twenty years. One of the key steps for analysing is the
prediction of protein-coding regions in genomic sequences, known as Open Reading Frames
(ORFs), which span between a start and a stop codon. A recent comparison of several ORF
prediction methods (Korandla et al., 2019) has shown that Prodigal (Hyatt et al., 2010), a
prokaryotic gene finder that uses dynamic programming, is one of the highest performing ab
initio ORF finders. Pyrodigal is a Python package that provides bindings and an interface to
Prodigal to make it easier to use in Python applications.

Statement of need
Prodigal is used in thousands of applications as the gene calling method for processing genomic
sequences. It is implemented in ANSI C, making it extremely efficient and relatively easy to
compile on different platforms. However, the only way to use Prodigal is through an executable,
making it inconvenient for bioinformaticians who rely on the increasingly popular Python
language. In addition to the hassle caused by the invocation of the executable from Python
code, the distribution of Python programs relying on Prodigal is also problematic, since they
now require an external binary that cannot be installed from the Python Package Index (PyPI).

To address these issues, we developed Pyrodigal, a Python module implemented in Cython
(Behnel et al., 2020) that binds to the Prodigal internals, resulting in identical predictions
and similar performance through a friendly object-oriented interface. The predicted genes are
returned as Python objects, with properties for retrieving confidence scores or coordinates, and
methods for translating the gene sequence with a default or user-provided translation table.
Prodigal is compiled from source and statically linked into a compiled Python extension, which
allows it to be installed with a single pip install command, even on a target machine that
requires compilation.

Pyrodigal has already been used as the implementation for the initial ORF finding stage in
several domains, including biosynthetic gene cluster prediction (Carroll et al., 2021), prophage
identification (Sirén et al., 2021; Turkington et al., 2021), and pangenome analysis (Hernández
et al., 2021).

Method
Internally, Prodigal identifies start and stop codons throughout a genomic sequence, which are
represented as nodes. It then uses a dynamic programming approach to compute scores for
every pair of nodes (i.e. putative genes) as shown in Figure 1. Scores assigned to predicted
genes are based primarily on the frequency of nucleotide hexamers inside the gene sequence.
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Figure 1: Graphical depiction of the Prodigal method for identifying genes in a sequence. First, the
sequence is analysed to find start and stop codons in the 6 reading frames (1). Dynamic programming
nodes are then created for each codon, each storing the strand (shown with the triangle direction,
right for the direct strand, left for the reverse strand) and the type (green for start, red for stop) of the
codon they were obtained from. Nodes are then scored on biological criteria (2). Putative genes are
identified between all start and stop codons in a given window (a gene cannot span between any pair
of nodes; some invalid connections are shown with dashed lines as examples). Then putative genes are
scored using a dynamic programming approach (3). Once all connections have been processed, the
dynamic programming matrix is traversed to find the highest scoring path, giving the final predictions
(4).

Pyrodigal adapts the first two steps so that the dynamic programming nodes can be extracted
directly from a Python string containing the sequence data, rather than requiring formatting
to an external file. In addition, the node storage has been reworked to use reallocating buffers,
saving memory on smaller sequences. The node and connection scoring steps use the original
Prodigal code.

Optimization
Prodigal was profiled with Valgrind (Nethercote & Seward, 2007) to identify critical parts of
the original code. Using bacterial genomes from the proGenomes v2.1 database (Mende et al.,
2020), we found that for long enough sequences, a large fraction of the CPU cycles was spent
in the score_connection function.

There are pairs of codons between which a gene can never span, such as two stop codons, or
a forward start codon and a reverse stop codon, as shown in Figure 1. Upon inspection, we
realized the score_connection was still called in invalid cases that could be labelled as such
beforehand. Identifying these invalid connections is feasible by checking the strand, type and
reading frame of a node pair. Considering two nodes i and j, the connection between them is
invalid if any of these boolean equations is true:

• (Ti 6= STOP ) ∧ (Tj 6= STOP ) ∧ (Si = Sj)
• (Si = 1) ∧ (Ti 6= STOP ) ∧ (Sj = −1)
• (Si = −1) ∧ (Ti = STOP ) ∧ (Sj = 1)
• (Si = −1) ∧ (Ti 6= STOP ) ∧ (Sj = 1) ∧ (Tj = STOP )
• (Si = Sj) ∧ (Si = 1) ∧ (Ti 6= STOP ) ∧ (Tj = STOP ) ∧ (Fi 6= Fj)
• (Si = Sj) ∧ (Si = −1) ∧ (Ti = STOP ) ∧ (Tj 6= STOP ) ∧ (Fi 6= Fj)
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where Ti, Si and Fi are respectively the type, strand, and reading frame of the node i, with
forward and reverse strands encoded as +1 and −1 respectively.

We developed a heuristic filter to quickly identify node pairs forming an invalid connection
prior to the scoring step using the above formulas. Since all these attributes have a small
number of possible values (+1 or −1 for the forward or reverse strand; ATG, GTG, TTG or
STOP for the codon type; −1, −2, −3, +1, +2, +3 for the reading frame), they can all be
stored in a single byte. Use of the SIMD features of modern CPUs allows several nodes to be
processed at once (8 nodes with NEON and SSE2 features, 16 nodes with AVX2). This first
pass produces a look-up table used to bypass the scoring of invalid connections.

The performance of the connection scoring was evaluated on 50 bacterial sequences of various
length, as shown in Figure 2. It suggests that even with the added cost of the additional pass
for each node, enabling the heuristic filter in Pyrodigal saves about half of the time needed to
score connections between all the nodes of a sequence.
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Figure 2: Evaluation of the connection scoring performance with different heuristic filter SIMD
backends (SSE2 or AVX2), with a generic backend (Generic) or without enabling the filter (None).
Each sequence was processed 10 times on a quiet i7-10710U CPU @ 1.10GHz.

Availability
Pyrodigal is distributed on PyPI under the GNU Lesser General Public License. Pre-compiled
distributions are provided for MacOS, Linux and Windows x86-64, as well as Linux Aarch64
machines. A Conda package is also available in the Bioconda channel (Grüning et al., 2018).

The source code is available in a git repository on GitHub, and features a Continuous Integration
workflow to run integration tests on changes. Documentation is hosted on ReadTheDocs and
built for each new release.
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