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Summary
Many randomized controlled clinical trials compare a continuous outcome variable that is
assessed longitudinally at scheduled follow-up visits between subjects assigned to a intervention
treatment group and those assigned to a control group. Missing outcome measurements may
occur because subjects miss an assessment or drop out from the trial altogether. Moreover,
intercurrent events (ICEs) such as discontinuations of the assigned treatment or initiations of
rescue medications may affect the interpretation or the existence of the outcome measurements
associated with the clinical question of interest. The ICH E9(R1) addendum on estimands, a
regulatory document published by the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use, presents a structured framework to link
trial objectives to a precise description of the targeted treatment effect in the presence of ICEs
and missing data (ICH E9 working group, 2019).

The R package rbmi was created to support analyses of trial endpoints which are aligned
with the defined estimand. Missing data is handled using multiple imputation (MI) assuming
multivariate normally distributed data. The package supports both standard imputation under
a missing-at-random assumption and reference-based imputation methods. Reference-based
methods impute missing data in the intervention treatment group based on observed data from
a reference group which is typically defined as the control group of the trial (Carpenter et al.,
2013). δ-based imputation methods which add an offset term, δ, to the imputed values prior
to the analysis in order to assess the impact of unobserved outcomes being worse or better
than those observed are also supported. Such methods are frequently used for sensitivity or
“tipping point” analyses (Cro et al., 2020).

Statement of need
rbmi is a flexible R package designed to support the analysis of randomized clinical trials with
continuous longitudinal endpoints. Both conventional MI methods based on Bayesian posterior
draws and novel methods based on maximum likelihood estimation and re-sampling (as described
in von Hippel & Bartlett (2021) and Wolbers et al. (2022)) are implemented. rbmi was
designed for statisticians from both academic clinical research units and pharmaceutical industry.
To our knowledge, a comprehensive and fully unit-tested R implementation of such approaches
is still lacking. An established software implementation of reference-based imputation in SAS
are the so-called “five macros” (Roger, 2021). An alternative R implementation which is
currently under development is the R package RefBasedMI (McGrath & White, 2021).
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rbmi workflow
All approaches implemented in rbmi follow a common workflow based on 4 core functions
which are called sequentially:

• draws() - fits the imputation models and stores their parameters
• impute() - creates multiple imputed datasets
• analyse() - analyses each of the multiple imputed datasets
• pool() - combines the analysis results across imputed datasets into a single statistic

This modular design creates a user-friendly and extensible environment that allows the user to
have direct control on all phases of the estimation process. In addition, a variety of helper
functions have been implemented to further support the user.

The draws() function has 3 input arguments:

• data: The primary longitudinal data.frame containing the outcome variable and all
covariates. The inclusion of time-varying covariates is also possible.

• data_ice: A data.frame which specifies the first visit affected by an ICE and the
imputation strategy for handling missing outcome data after the ICE. Imputation of
missing data prior to any ICE is always under a missing-at-random assumption.

• method: The selected statistical approach which is defined by creating a method object
by using one of:

– method_bayes() for MI based on Bayesian posterior parameter draws from MCMC
sampling and inference based on Rubin’s rules (Carpenter et al., 2013).

– method_approxbayes(): as for method_bayes() except that approximate Bayesian
posterior draws are obtained via bootstrapping and maximum likelihood estimation
(Little & Rubin (2002, sec. 10.2.3, part 6)).

– method_condmean() for conditional mean imputation based on maximum likelihood
estimation. Inference is based on re-sampling techniques (bootstrap or jackknife)
as described in Wolbers et al. (2022).

– method_bmlmi() for bootstrapped maximum likelihood MI as described in von
Hippel & Bartlett (2021).

In addition to detailed help files for all functions, the package contains three vignettes: a
quickstart vignette which describes the basic functionality, an advanced vignette which
describes some of the advanced features, and a stat_specs vignette which describes the
statistical methodology.

Availability and testing
rbmi is developed open source on https://github.com/insightsengineering/rbmi and major
releases will also be uploaded to CRAN. All production code is required to have been reviewed by
an independent programmer as well as pass a suite of automated unit tests which both define and
document the expected input and output of each function. Additionally comparisons are made
to similar software (namely the so-called “five macros” (Roger, 2021) SAS implementation)
to ensure consistency of results as well as to simulated datasets with known values. To date,
rbmi has been used in two simulation studies reported in Wolbers et al. (2022) and Noci et al.
(2021).
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