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Summary
The GAP package QDistRnd implements a probabilistic algorithm for finding the minimum
distance of a quantum low-density parity-check code linear over a finite field GF(q). At each
step several codewords are randomly drawn from a distribution biased toward smaller weights.
The corresponding weights are used to update the upper bound on the distance, which eventually
converges to the minimum distance of the code. While there is no performance guarantee, an
empirical convergence criterion is given to estimate the probability that a minimum weight
codeword has been found. In addition, a format for storing matrices associated with q-ary
quantum codes is introduced and implemented via the provided import/export functions. The
format, MTXE, is based on the well established MaTrix market eXchange (MTX) Coordinate
format developed at NIST, and is designed for full backward compatibility with this format.
Thus, MTXE files are readable by any software package which supports MTX.

Statement of need
Multi-particle quantum correlations can be destroyed rapidly in the presence of errors due
to noise, environment, or just random control errors (Nielsen & Chuang, 2000). Quantum
error correction (QEC) gives a unique way of controlling such errors and enables, at least
theoretically, an arbitrarily long quantum computation when error probability p is below certain
threshold, pc > 0.

QEC requires the use of specially designed quantum error-correcting codes (QECCs). One of
the most important parameters of a QECC is the code distance, the minimum weight of a
non-trivial logical operator in the code. While for some code families the distance is known
or can be related to that of a classical linear error-correcting code, as, e.g., in the case of
hypergraph-product and related codes (Tillich & Zémor, 2009; Zeng & Pryadko, 2019, 2020),
in many cases the distance has to be computed directly (Bravyi & Hastings, 2014; Guth &
Lubotzky, 2014; Kovalev & Pryadko, 2013b; Panteleev & Kalachev, 2021b). Computing the
distance is related to the problem of minimum-weight syndrome-based decoding; just like for
the classical linear codes (Evseev, 1983), this problem is NP-hard (note that truly optimal
maximum-likelihood decoding for quantum codes requires degeneracy to be taken into account
and is a #P-complete problem (Iyer & Poulin, 2015)).

To our knowledge, there is no freely available software for computing the distance of a q-ary
quantum stabilizer code. A version of the Zimmermann algorithm for finding the distance
of linear codes is implemented in Magma (Bosma et al., 1997), and has been adapted in
application to quantum codes, see http://magma.maths.usyd.edu.au/magma/handbook/text/
1971#22279. Its performance, in particular, in application to practically important (Kovalev
& Pryadko, 2013a) highly-degenerate quantum codes, also known as quantum LDPC codes,
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has not been tested by the authors. Several C and C++ programs for computing the minimum
distance of qubit (binary) Calderbank-Shor-Steane (CSS) codes in various stages of development
can also be found at the GitHub respository QEC-pages, owned by one of the authors.

The lack of available software has caused researchers in the field of QECC to either skip the
minimum distance calculations altogether (Panteleev & Kalachev, 2021b), or develop their
own suboptimal algorithms. In particular, Bravyi and Hastings (Bravyi & Hastings, 2014) used
an exhaustive search over all non-trivial codewords for calculating the minimum distances.

Note that for some families of QECCs, the distance can be calculated efficiently. In particular,
N. P. Breuckmann (2017) described an algorithm attributed to S. Bravyi for computing the
distance of a surface code based on a locally planar graph; for such a code of length n with
k logical qubits, the distance can be computed in O(kn2 logn) steps. Similarly, a version of
the error-impulse method (Declercq & Fossorier, 2008; Hu et al., 2004) based on the belief
propagation decoding algorithm designed for linear LDPC codes can in principle be used for
quantum LDPC codes. We are not aware of any applications of such a technique to QECCs.

We should mention recent theoretical constructions that prove the existence of families of
quantum LDPC codes with stabilizer generators of bounded weight and linear (or almost
linear) minimum distances (Nikolas P. Breuckmann & Eberhardt, 2021; Hastings et al., 2021;
Panteleev & Kalachev, 2021a, 2022). Hardly any of the codes from the described families have
been explicitly constructed, the reason being that the constructions are expected to produce
very long codes. Thus, there is also a need to develop software for calculating minimal distances
of quantum codes and optimized specifically for long (n > 103) and very long (n > 105)
quantum LDPC codes based on qubits.

Functionality of the package
The distance-finding routines in the package QDistRnd are derived from the code originally
written by one of the authors. Implemented algorithm is a variant of the random Information
Set (IS) algorithm based on random column permutations and Gauss elimination (Coffey &
Goodman, 1990; Kruk, 1989; Leon, 1988). Its eventual convergence for quantum stabilizer
codes can be proved based on the existence (Cuéllar et al., 2021) of a permutation matrix P
such that the reduced row echelon form of the matrix G′ = GP contains a vector with the
weight equal to the distance of the linear code generated by the rows of G. Further, a related
Covering Set (CS) algorithm has a provable performance (Dumer et al., 2017) for generic
(non-LDPC) quantum codes based on random matrices; the corresponding estimate of the
number of iterations needed to obtain the distance with probability sufficiently close to 1 also
applies for the IS algorithm.

The GAP computer algebra system was chosen because of its excellent support for linear
algebra over finite fields. The package QDistRnd gives a reference implementation of the
algorithm, with a focus on generality and matrix formats, but not necessarily performance.
Nevertheless, the routines are sufficiently fast when dealing with codes of practically important
block lengths n . 103.

The package also contains functions for importing/exporting matrices with elements in a given
(finite) Galois field, and a description of a text-based format MTXE based on the well-established
MaTrix market eXchange (MTX) Coordinate format developed at NIST (National Institute of
Standards and Technology, 2013). The extension is implemented via structured comments,
which guarantees full backward compatibility with the original MTX format. Thus, MTXE files
can be read directly by any software package that supports MTX, although some additional
processing of matrix elements may be required.
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