
liionpack: A Python package for simulating packs of
batteries with PyBaMM
Thomas G. Tranter1, 2, Robert Timms2, 3, Valentin Sulzer4, Ferran
Brosa Planella2, 5, Gavin M. Wiggins6, Suryanarayana V. Karra6,
Priyanshu Agarwal7, Saransh Chopra8, Srikanth Allu6, Paul R.
Shearing1, 2, and Dan J. L. Brett1, 2

1 Department of Chemical Engineering, University College London, London, WC1E 7JE, United
Kingdom. 2 The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot, OX11
0RA, United Kingdom. 3 Mathematical Institute, University of Oxford, OX2 6GG, United Kingdom.
4 Carnegie Mellon University, Scott Hall 5109, 5000 Forbes Ave, Pittsburgh, PA 15213, United
States. 5 WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom 6 Oak Ridge National
Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States. 7 Symbiosis
Institute of Technology, Symbiosis International University, Lavale, Pune, Maharashtra 412115,
India. 8 Cluster Innovation Centre, University of Delhi, GC Narang Road, Delhi, 110007, India.

DOI: 10.21105/joss.04051

Software
• Review
• Repository
• Archive

Editor: Tim Tröndle
Reviewers:

• @EricaEgg
• @mefuller
• @yangbai90

Submitted: 13 December 2021
Published: 21 February 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Electrification of transport and other energy intensive activities is of growing importance as it
provides an underpinning method to reduce carbon emissions. With an increase in reliance on
renewable sources of energy and a reduction in the use of more predictable fossil fuels in both
stationary and mobile applications, energy storage will play a pivotal role and batteries are
currently the most widely adopted and versatile form. Therefore, understanding how batteries
work, how they degrade, and how to optimize and manage their operation at large scales is
critical to achieving emission reduction targets. The electric vehicle (EV) industry requires
a considerable number of batteries even for a single vehicle, sometimes numbering in the
thousands if smaller cells are used, and the dynamics and degradation of these systems, as well
as large stationary power systems, is not that well understood. As increases in the efficiency
of a single battery become diminishing for standard commercially available chemistries, gains
made at the system level become more important and can potentially be realised more quickly
compared with developing new chemistries. Mathematical models and simulations provide a
way to address these challenging questions and can aid the engineer and designers of batteries
and battery management systems to provide longer lasting and more efficient energy storage
systems.

Statement of need

liionpack is a PyBaMM-affiliated Python package for simulating large systems of batteries
connected in series and parallel. Python enables wrapping low-level languages (e.g., C) for
speed without losing flexibility or ease-of-use in the user-interface. liionpack was designed
to be used by physicists, engineers, students, academics and industrial researchers and system
designers concerned with the dynamics of electric current and heat transport in large battery
systems. Commercial battery pack simulation tools are available such as modules that can be
included within Comsol®, Simulink® and STAR-CCM+™, but to our knowledge liionpack
is the first to be released open-source. The commercial packages contain more advanced
features such as GUI’s for circuit design, and integration with CAD based thermal and fluid

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

1

https://doi.org/10.21105/joss.04051
https://github.com/openjournals/joss-reviews/issues/4051
https://github.com/pybamm-team/liionpack
https://doi.org/10.5281/zenodo.6123712
https://github.com/timtroendle
https://github.com/EricaEgg
https://github.com/mefuller
https://github.com/yangbai90
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04051

dynamics tools, but liionpack provides everything you need to model a pack of batteries
with simple physics and can incorporate circuit definitions defined elsewhere and heat transfer
coefficients that are calculated elsewhere. We hope that it will provide the battery community
with a platform to build upon to add more features in the future and increase productivity,
reproducibility and transparency in this research space.
The API for liionpack was designed to provide a simple and efficient extension to the PyBaMM
(Sulzer et al., 2021) framework allowing users to scale up simulations from single cells to many
thousands with a few extra lines of code. PyBaMM provides a number of classic physics-based
single battery models with configurable options to investigate thermal effects and degradation,
for example. The pack architecture introduced by liionpack can be defined as a number of
batteries connected in series and parallel to one another using busbars and interconnections
with defined resistances. A netlist may also be used to construct the pack which is more
flexible and allows for configurable network topology and can be constructed graphically with
packages such as LTSpice (Brocard, 2013) or simply created manually, specifying nodal
connections as either current sources, voltage sources or resistors. Statistical distributions can
be easily incorporated into the pack architecture elements through the use of input parameters
that allow a single model to be solved with varying inputs.

Figure 1: Coupled system solution algorithm.

Algorithm

The algorithm to solve the coupled system of batteries is shown in Figure 1. The nature
of the solving process facilitates parallel processing of the electrochemical problem for each
battery during each time-step formulated as an integrable set of 1D differential-algebraic
equations (DAEs). The system is coupled electrically at the global level via the busbars and
interconnections in the circuit and solving this linear algebraic system between electrochemical

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

2

https://doi.org/10.21105/joss.04051

time-steps determines the current balance and boundary conditions for each battery at the
next time-step. The combination of a global circuit solve and local electrochemical solve
repeatedly iterated over in time in a see-saw fashion provides the most simple and efficient
way of coupling the system without repeating time-steps. Results for solving a single battery
forming a circuit with negligible busbar resistance deviates by less than 0.01% from a pure
PyBaMM simulation.
At present, the circuits that are solved may only contain three different types of element:
namely current sources, voltage sources, and resistors. Resistors are used to represent the
busbars and interconnections in the pack as well as the internal resistance of the batteries. The
open circuit voltage is used for the voltage sources in the circuit and modified nodal analysis
(MNA) (Ho et al., 1975) is used to solve the circuit problem determining the distribution of
current in the pack. A typical 4p1s pack architecture is shown below in Figure 2, which was
produced using Lcapy (The Lcapy developers, 2014).

Figure 2: Typical pack architecture.

Presently, the thermal problem is solved in a non-coupled way with each battery acting as
an independent heat source and interacting with its environment in a “lumped” sense with
a volume-averaged heat transfer coefficient. Heat generation and conduction through the
busbars and from cell to neighbouring cells is likely to occur in some scenarios and can be
accounted for by solving a transient thermal problem on the network architecture (Tranter et
al., 2020), which will be implemented in future releases. Heat transfer coefficients may also
be easily adjusted on a cell-by-cell basis and also throughout the simulation solving process
to reflect heterogenous and time-dependent cooling conditions.
Several distributed solvers are provided and can be selected through a common function with
a simple function argument. These are Casadi (Andersson et al., 2019), which uses multi-

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

3

https://doi.org/10.21105/joss.04051

threading and works well for single workstations, and ray (Moritz et al., 2018) and dask
(Dask Development Team, 2016), which are designed for running on clusters and use multi-
processing. Many of the functions and models that can be found in PyBaMM should work in
exactly the same way in liionpack and examples are provided showing how to set up and
configure different battery models for running in the pack system. Several visualization tools
are also provided for analysis of the results.

Example

An example of a small pack is included below. A 4p1s configuration is defined with busbar
resistance of 1 mΩ and interconnection resistance of 10 mΩ. The Chen2020 (Chen et al.,
2020) parameter set is used to define the battery cell chemistry which was gathered using an
LG M50 cylindrical cell of 21700 format. By default the single particle model SPM is used to
define the electrochemical battery model system but a suite of others are available (Marquis
et al., 2020) and can be configured using a custom simulation.

import liionpack as lp
import pybamm

Generate the netlist
netlist = lp.setup_circuit(Np=4, Ns=1, Rb=1e-3, Rc=1e-2)

Define some additional variables to output
output_variables = [

'X-averaged negative particle surface concentration [mol.m-3]',
'X-averaged positive particle surface concentration [mol.m-3]',

]

Cycling experiment, using PyBaMM
experiment = pybamm.Experiment([

"Charge at 5 A for 30 minutes",
"Rest for 15 minutes",
"Discharge at 5 A for 30 minutes",
"Rest for 30 minutes"],
period="10 seconds")

PyBaMM battery parameters
chemistry = pybamm.parameter_sets.Chen2020
parameter_values = pybamm.ParameterValues(chemistry=chemistry)

Solve the pack problem
output = lp.solve(netlist=netlist,

parameter_values=parameter_values,
experiment=experiment,
output_variables=output_variables,
initial_soc=0.5)

Display the results
lp.plot_output(output)

Draw the circuit at final state
lp.draw_circuit(netlist, cpt_size=1.0, dpi=150, node_spacing=2.5)

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

4

https://doi.org/10.21105/joss.04051

The output for the examples is shown below as a pack summary in Figure 3 and an example
of a cell variable plot showing each battery current in Figure 4.

Figure 3: Pack summary showing the pack terminal voltage and total current.

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

5

https://doi.org/10.21105/joss.04051

Figure 4: An example of individual cell variable data, any variable defined by the PyBaMM model
should be accessible.

Acknowledgements

PyBaMM-team acknowledges the funding and support of the Faraday Institution’s multi-scale
modelling project under grant number EP/S003053/1, FIRG025.
The development work carried out by members at Oak Ridge National Laboratory was partially
sponsored by the Office of Electricity under the United States Department of Energy (DOE).

References

Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: A software
framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1), 1–36. https://doi.org/10.1007/s12532-018-0139-4

Brocard, G. (2013). The LTspice IV simulator: Manual, methods and applications. Würth
Elektronik.

Chen, C.-H., Brosa Planella, F., O’Regan, K., Gastol, D., Widanage, W. D., & Kendrick,
E. (2020). Development of experimental techniques for parameterization of multi-scale
lithium-ion battery models. Journal of The Electrochemical Society, 167(8), 080534.
https://doi.org/10.1149/1945-7111/ab9050

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.
org

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

6

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1149/1945-7111/ab9050
https://dask.org
https://dask.org
https://doi.org/10.21105/joss.04051

Ho, C.-W., Ruehli, A., & Brennan, P. (1975). The modified nodal approach to network
analysis. IEEE Transactions on Circuits and Systems, 22(6), 504–509. https://doi.org/
10.1109/TCS.1975.1084079

Marquis, S. G., Timms, R., Sulzer, V., Please, C. P., & Chapman, S. J. (2020). A suite of
reduced-order models of a single-layer lithium-ion pouch cell. Journal of The Electrochem-
ical Society, 167(14), 140513. https://doi.org/10.1149/1945-7111/abbce4

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z.,
Paul, W., Jordan, M. I., & Stoica, I. (2018). Ray: A distributed framework for emerging
AI applications (pp. 561–577). USENIX Association. ISBN: 978-1-939133-08-3

Sulzer, V., Marquis, S. G., Timms, R., Robinson, M., & Chapman, S. J. (2021). Python
battery mathematical modelling (PyBaMM). Journal of Open Research Software, 9(1).
https://doi.org/10.5334/jors.309

The Lcapy developers. (2014). Lcapy, a python package for linear circuit analysis. https:
//lcapy.readthedocs.io

Tranter, T. G., Timms, R., Heenan, T. M. M., Marquis, S. G., Sulzer, V., Jnawali, A., Kok,
M. D. R., Please, C. P., Chapman, S. J., Shearing, P. R., & others. (2020). Probing
heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and
thermal transport using tomographic domains. Journal of The Electrochemical Society,
167(11), 110538. https://doi.org/10.1149/1945-7111/aba44b

Tranter et al., (2022). liionpack: A Python package for simulating packs of batteries with PyBaMM. Journal of Open Source Software, 7(70),
4051. https://doi.org/10.21105/joss.04051

7

https://doi.org/10.1109/TCS.1975.1084079
https://doi.org/10.1109/TCS.1975.1084079
https://doi.org/10.1149/1945-7111/abbce4
https://worldcat.org/isbn/978-1-939133-08-3
https://doi.org/10.5334/jors.309
https://lcapy.readthedocs.io
https://lcapy.readthedocs.io
https://doi.org/10.1149/1945-7111/aba44b
https://doi.org/10.21105/joss.04051

	Summary
	Statement of need
	Algorithm
	Example
	Acknowledgements
	References

