
VeridicalFlow: a Python package for building trustworthy
data science pipelines with PCS
James Duncan∗1, Rush Kapoor†2, Abhineet Agarwal‡3, Chandan
Singh§2, and Bin Yu1, 2, 4

1 Graduate Group in Biostatistics, University of California, Berkeley 2 EECS Department, University
of California, Berkeley 3 Physics Department, University of California, Berkeley 4 Statistics
Department, University of California, Berkeley

DOI: 10.21105/joss.03895

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @kmichael08
• @richrobe

Submitted: 01 November 2021
Published: 12 January 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
VeridicalFlow is a Python package that simplifies building reproducible and trustworthy
data science pipelines using the PCS (predictability-computability-stability) framework (Yu &
Kumbier, 2020). It provides users with a simple interface for stability analysis, i.e., checking
the robustness of results from a data science pipeline to various judgement calls made during
modeling. This ensures that arbitrary judgement calls made by data practitioners (e.g., spec-
ifying a default imputation strategy) do not dramatically alter the final conclusions made in
a modeling pipeline. In addition to wrappers facilitating stability analysis, VeridicalFlow
also automates many cumbersome coding aspects of Python pipelines, including experiment
tracking and saving, parallelization, and caching, all through integrations with existing Python
packages. Overall, the package helps to code using the PCS framework by screening models
for predictive performance, helping automate computation, and facilitating stability analysis.

Statement of need
Predictability, computability, and stability are central concerns in modern statistical/machine
learning practice, as they are required to help vet that findings reflect reality, can be reasonably
computed, and are robust to the many judgment calls during the data science life cycle that
often go unchecked (Yu & Kumbier, 2020).
The package focuses on stability but also provides wrappers to help support and improve
predictability and computability. Stability is a common-sense principle related to notions of
scientific reproducibility (Ivie & Thain, 2018), sample variability, robust statistics, sensitivity
analysis (Saltelli, 2002), and stability in numerical analysis and control theory. Moreover,
stability serves as a prerequisite for understanding which parts of a model will generalize and
can be interpreted (Murdoch et al., 2019).
Importantly, current software packages offer very little support to facilitate stability analyses.
VeridicalFlow helps fill this gap by making stability analysis simple, reproducible, and com-
putationally efficient. This enables a practitioner to represent a pipeline with many different
perturbations in a simple-to-code way while using prediction analysis as a reality check to
screen out poor models.

∗Equal contribution
†Equal contribution
‡Equal contribution
§Equal contribution

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source
Software, 7(69), 3895. https://doi.org/10.21105/joss.03895

1

https://doi.org/10.21105/joss.03895
https://github.com/openjournals/joss-reviews/issues/3895
https://github.com/Yu-Group/veridical-flow
https://doi.org/10.5281/zenodo.5841669
https://avesis.istanbul.edu.tr/mhsatman
https://github.com/kmichael08
https://github.com/richrobe
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03895

Features
Using VeridicalFlow’s simple wrappers easily enables many best practices for data science
and makes writing powerful pipelines straightforward (see Table 1).

Table 1: Features overview

Stability Computability Reproducibility
Replace a single function (e.g.,
preprocessing) with a set of
functions representing different
judgment calls and easily assess
the stability of downstream results

Automatic parallelization and
caching throughout the pipeline

Automatic experiment
tracking and saving

The main features of VeridicalFlow center around stability analysis, a method for evaluating
the constancy of some target quantity relative to a set of reasonable or realistic perturbations.
The central concept is the Vset, short for “veridical set,” which replaces a given static pipeline
step with a set of functions subject to different pipeline perturbations that are documented
and argued for via PCS documentation (Yu & Kumbier, 2020). Then, a set of useful anal-
ysis functions and computations enable simple assessment of the pipeline’s stability to these
perturbations on top of predictive screening for reality checks to filter unstable pipeline paths
from further analysis.

A stability analysis example
1. Define stability target

In the example below, we will probe the stability of the permutation feature importance metric
for random forest relative to data resampling, data preprocessing, and model hyperparameter
perturbations. Below, we create a Vset that applies three custom data preprocessing functions
and another that calculates the permutation importance metric via the function sklearn.in
spection.permutation_importance.
from vflow import Vset, build_vset
from sklearn.impute import KNNImputer, SimpleImputer
from sklearn.inspection import permutation_importance

preproc_list = [SimpleImputer(strategy='mean'),
SimpleImputer(strategy='median'),
KNNImputer()]

create a Vset which varies over preproc_list
we use output_matching=True to ensure that preprocessing strategies
match throughout the pipeline
preproc_set = Vset('preproc', preproc_list, ['mean', 'med', 'knn'],

output_matching=True)

create the feature importance Vset using helper build_vset
feat_imp_set = build_vset('feat_imp', permutation_importance,

n_repeats=4)

2. Define model hyperparameter perturbations

We can also specify modeling perturbations, both within a single class of models (hyperpa-
rameter perturbations) and across different classes. Here we’ll use the helper build_vset to

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source
Software, 7(69), 3895. https://doi.org/10.21105/joss.03895

2

https://doi.org/10.21105/joss.03895

create hyperparameter perturbations for random forest.
from sklearn.ensemble import RandomForestRegressor as RF

hyperparameters to try
RF_params = {

'n_estimators': [100, 300],
'min_samples_split': [2, 10]

}

we could instead pass a list of distinct models
and corresponding param dicts
RF_set = build_vset('RF', RF, param_dict=RF_params)

3. Define data perturbations

For stability analysis, it is often useful to add data perturbations such as the bootstrap in
order to assess stability over resampling variability in the data.
from sklearn.utils import resample

create a Vset for bootstrapping from data 100 times
we use lazy=True so that the data will not be resampled until needed
boot_set = build_vset('boot', resample, reps=100, lazy=True)

4. Fit all models for all combinations of resampling and preprocessing

Now we can load in our data and fit each of the four random forest models to the 300
combinations of resampled training data and preprocessing functions.
from vflow import init_args

read in some data
X_train, y_train, X_val, y_val = ...

wrap data for use with vflow
X_train, y_train, X_val, y_val = \

init_args([X_train, y_train, X_val, y_val])

bootstrap from training data by calling boot_fun
X_trains, y_trains = boot_set(X_train, y_train)

apply three preprocessing methods to each bootstrap sample
X_trains = preproc_set.fit_transform(X_trains)

fit the 4 RF models to each of the boot/preproc combos
RF_set.fit(X_trains, y_trains)

We can examine the pipeline graph to see what happened so far using the utility function
build_graph, which results in subsubsection .
from vflow import build_graph
build_graph(RF_set)

The pipeline graph that results from fitting RF_set.

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source
Software, 7(69), 3895. https://doi.org/10.21105/joss.03895

3

https://doi.org/10.21105/joss.03895

5. Calculate feature importances and perturbation statistics

Finally, we calculate the importance metric and examine its mean and standard deviation
across bootstrap perturbations for each combination of data preprocessing and modeling hy-
perparameters. This allows us to assess the stability of the feature importances conditioned
on different pipeline paths:
from vflow import dict_to_df, perturbation_stats

calculate importances
importances = feat_imp_set(RF_set.out,

preproc_set.fit_transform(X_val), y_val)

the helper dict_to_df converts the output to a pandas.DataFrame and
using param_key='out' separates the importance dict into multiple cols
importances_df = dict_to_df(importances, param_key='out')

get count, mean, and std of the permutation importances
perturbation_stats(importances_df, 'preproc', 'RF',

wrt='out-importances_mean',
prefix='X', split=True)

Perturbation statistics of permutation feature importances.
As seen in subsubsection , we can filter over the data preprocessing and modeling perturbations
via the helper filter_vset_by_metric to select the top combinations in terms of stability
(or another metric of interest) and continue our analysis on a held-out test set.

Computation and tracking
The package also helps users to improve the efficiency of their computational pipelines. Com-
putation is (optionally) handled through Ray (Moritz et al., 2018), which easily facilitates par-
allelization across different machines and along different perturbations of the pipeline. Caching
is handled via joblib, so that individual parts of the pipeline do not need to be rerun. Moreover,
vflow supports lazy evaluation of Vsets, as shown in the example above. Thus, computation
and data can be deferred to when it is needed, saving on memory and allowing the pipeline
graph to be built and examined before beginning computation.
Experiment-tracking and saving are (optionally) handled via integration with MLFlow (Zaharia
et al., 2018), which enables automatic experiment tracking and saving.

Related packages
The code here heavily derives from the wonderful work of previous projects. It hinges on
the data science infrastructure of Python, including packages such as pandas (Reback et al.,
2011), NumPy (Van Der Walt et al., 2011), and scikit-learn (Pedregosa et al., 2011) as well
as newer projects such as imodels (Singh et al., 2021) and NetworkX (Hagberg & Conway,
n.d.).
The functionality provided by VeridicalFlow is related to the sklearn.pipeline.Pipe
line class but allows for more general pipeline steps (e.g., steps need not use the fit or
transform methods) and for reuse of those steps in the same or other pipelines. Moreover,
pipeline graphs in VeridicalFlow are generated dynamically by interactions between Vsets.
This added flexibility of pipelines in VeridicalFlow is akin to the dynamic computational
graphs in TensorFlow (via tensorflow.keras.layers and tensorflow.function) and Ray
(via @ray.remote). Indeed, when a Vset is created with is_async=True, VeridicalFlow’s
pipeline graph is backed by Ray’s task graph.

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source
Software, 7(69), 3895. https://doi.org/10.21105/joss.03895

4

https://joblib.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.03895

Acknowledgements
This work was supported in part by National Science Foundation (NSF) Grants DMS-1613002,
DMS-1953191, DMS-2015341, IIS-1741340, the Center for Science of Information (CSoI, an
NSF Science and Technology Center) under grant agreement CCF-0939370, NSF Grant DMS-
2023505 on Collaborative Research: Foundations of Data Science Institute (FODSI), the
NSF and the Simons Foundation for the Collaboration on the Theoretical Foundations of
Deep Learning through awards DMS-2031883 and DMS-814639, a Chan Zuckerberg Biohub
Intercampus Research Award, and a grant from the Weill Neurohub.

References
Hagberg, A., & Conway, D. (n.d.). NetworkX: Network analysis with Python. https://

networkx.org/
Ivie, P., & Thain, D. (2018). Reproducibility in scientific computing. ACM Computing Surveys

(CSUR), 51(3), 1–36. https://doi.org/10.1145/3186266
Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z.,

Paul, W., Jordan, M. I., & others. (2018). Ray: A distributed framework for emerging AI
applications. 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 561–577.

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research, 12, 2825–2830. http:
//jmlr.org/papers/v12/pedregosa11a.html

Reback, J., McKinney, W., jbrockmendel, Bossche, J. V. den, Augspurger, T., Cloud, P.,
gfyoung, Sinhrks, Klein, A., Roeschke, M., Tratner, J., She, C., Ayd, W., Hawkins, S.,
Petersen, T., Schendel, J., Hayden, A., Garcia, M., Jancauskas, V., … Kluyver, T. (2011).
pandas: A foundational python library for data analysis and statistics. Python for High Per-
formance and Scientific Computing, 14(9), 1–9. https://doi.org/10.5281/zenodo.3509134

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3),
579–590. https://doi.org/10.1111/0272-4332.00040

Singh, C., Nasseri, K., Tan, Y. S., Tang, T., & Yu, B. (2021). imodels: A python package
for fitting interpretable models. Journal of Open Source Software, 6(61), 3192. https:
//doi.org/10.21105/joss.03192

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
https://doi.org/10.1109/mcse.2011.37

Yu, B., & Kumbier, K. (2020). Veridical data science. Proceedings of the National Academy
of Sciences, 117(8), 3920–3929. https://doi.org/10.1145/3336191.3372191

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching,
S., Nykodym, T., Ogilvie, P., Parkhe, M., & others. (2018). Accelerating the machine
learning lifecycle with MLflow. IEEE Data Eng. Bull., 41(4), 39–45. https://doi.org/10.
1145/3399579.3399867

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source
Software, 7(69), 3895. https://doi.org/10.21105/joss.03895

5

https://networkx.org/
https://networkx.org/
https://doi.org/10.1145/3186266
https://doi.org/10.1073/pnas.1900654116
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.21105/joss.03192
https://doi.org/10.21105/joss.03192
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1145/3336191.3372191
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.21105/joss.03895

	Summary
	Statement of need
	Features
	A stability analysis example
	1. Define stability target
	2. Define model hyperparameter perturbations
	3. Define data perturbations
	4. Fit all models for all combinations of resampling and preprocessing
	5. Calculate feature importances and perturbation statistics

	Computation and tracking

	Related packages
	Acknowledgements
	References

