
flowTorch - a Python library for analysis and
reduced-order modeling of fluid flows
Andre Weiner1 and Richard Semaan1

1 Technische Universität Braunschweig, Institute of Fluid Mechanics, Flow Modeling and Control
Group

DOI: 10.21105/joss.03860

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @akaptano
• @JaroslavHron
• @salrm8
• @hkjeldsberg

Submitted: 18 October 2021
Published: 13 December 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The flowTorch library enables researchers to access, analyze, and model fluid flow data from
experiments or numerical simulations. Instead of a black-box end-to-end solution, flowTorch
provides modular components allowing to assemble transparent and reproducible workflows
with ease. Popular data formats for fluid flows like OpenFOAM, VTK, or DaVis may be
accessed via a common interface in a few lines of Python code. Internally, the data are
organized as PyTorch tensors. Relying on PyTorch tensors as primary data structure enables
fast array operations, parallel processing on CPU and GPU, and exploration of novel deep
learning-based analysis and modeling approaches. The flowTorch packages also includes
a collection of Jupyter notebooks demonstrating how to apply the library components in a
variety of different use cases, e.g., finding coherent flow structures with modal analysis or
creating reduced-order models.

Statement of need

Thanks to the increased processing power of modern hardware, fluid flow experiments as well
as numerical simulations are producing vast amounts of highly resolved, complex data. Those
data offer great opportunities to optimize industrial processes or to understand natural phe-
nomena. As modern datasets continue to grow, post-processing pipelines will be increasingly
important for synthesizing different data formats and facilitating complex data analysis. While
most researchers prefer simple text-encoded comma-separated value (CSV) files, big datasets
require special binary formats, such as HDF5 or NetCDF. If the data are associated with a
structured or an unstructured mesh, VTK files are a popular choice. Other simulation li-
braries for fluid flows, like OpenFOAM, organize mesh and field data in custom folder and file
structures. On the experimental side, software packages like DaVis allow exporting particle
image velocimetry (PIV) snapshots as CSV files. Reading CSV files can be a daunting task,
too. A sequence of snapshots might be organized in one or multiple files. If the data are
stored in a single file, the file must be read first and then the individual snapshots must be
extracted following some initially unknown pattern. If the data are spread out over multiple
files, the time might be encoded in the file name, but it could be also the case that the
files are located in individual folders whose names encode the time. The latter structure is
typical for OpenFOAM run time post-processing data. Moreover, different software packages
will create different file headers, which may have to be parsed or sometimes ignored. CSV,
VTK, or OpenFOAM data may come as binary or text-encoded files. This list is by no means
comprehensive in terms of available formats and presents only the tip of the iceberg.
A common research task may be to compare and combine different data sources of the same
fluid flow problem for cross-validation or to leverage each source’s strengths in different kinds

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

1

https://doi.org/10.21105/joss.03860
https://github.com/openjournals/joss-reviews/issues/3860
https://github.com/FlowModelingControl/flowtorch
https://doi.org/10.5281/zenodo.5770244
https://kevinmoerman.org
https://github.com/akaptano
https://github.com/JaroslavHron
https://github.com/salrm8
https://github.com/hkjeldsberg
http://creativecommons.org/licenses/by/4.0/
https://www.openfoam.com/
https://vtk.org/
https://www.lavision.de/en/products/davis-software/
https://pytorch.org/
https://www.hdfgroup.org/solutions/hdf5/
https://en.wikipedia.org/wiki/NetCDF
https://doi.org/10.21105/joss.03860

of analysis. A typical example would be to compare or combine PIV data with sampled planes
extracted from a numerical simulation. The simulation offers greater details and additional
field information, while the PIV experiment is more trustworthy since it is closer to the real
application. The PIV data may have to be processed and cleaned before using it in consec-
utive analysis steps. Often, significant research time is spent on accessing, converting, and
processing the data with different tools and different formats to finally analyze the data in
yet another tool. Text-encoded file format might be convenient at first when exchanging data
between tools, but for large datasets the additional conversion is unsuitable.
flowTorch aims to simplify access to data by providing a unified interface to various data
formats via the subpackage flowtorch.data. Accessing data from a distributed OpenFOAM
simulation is as easy as loading VTK or PIV data and requires only a few lines of Python code.
All field data are converted internally to PyTorch tensors (Paszke et al., 2019). Once the data
are available as PyTorch tensors, further processing steps like scaling, clipping, masking, split-
ting, or merging are readily available as single function calls. The same is true for computing
the mean, the standard deviation, histograms, or quantiles. Modal analysis techniques, like
dynamic mode decomposition (DMD)(Kutz et al., 2016; Schmid, 2010) and proper orthogo-
nal decomposition (POD)(Brunton & Kutz, 2019; Semaan et al., 2020), are available via the
subpackage flowtorch.analysis. The third subpackage, flowtorch.rom, enables adding
reduced-order models (ROMs), like cluster-based network modeling (CNM)(Fernex et al.,
2021), to the post-processing pipeline. Computationally intensive tasks may be offloaded to
the GPU if needed, which greatly accelerates parameter studies. The entire analysis workflow
described in the previous section can be performed in a single ecosystem sketched in Figure 1.
Moreover, re-using an analysis pipeline in a different problem setting is straightforward.

flowTorch library, tutorials, data

PyTorch skLearn NumPy Matplotlib

user scripts and Jupyter notebooks

flowtorch.data flowtorch.analysis flowtorch.rom

VTK H5Py Jupyter Lab Pandas

Figure 1: Components of flowTorch and library dependencies.

Besides the subpackages already available in flowTorch, the library also integrates nicely with
related software packages like ParaView or VisIt for mesh-based post-processing as well as
specialized analysis and modeling packages like PyDMD (Demo et al., 2018), PySINDy (Silva
et al., 2020), or modred. Rather than re-implementing functionality already existing in other
established libraries, flowTorch wraps around them to simplify their usage and streamline
the overall post-processing pipeline. For example, we use ParaView’s vtk package to access
various types of VTK files in Python. Gathering point coordinates, write times, or snapshots
from several VTK files requires very different steps than when dealing with OpenFOAM or
DaVis data. However, due to the common interface to data sources in flowTorch, these tasks
appear to be exactly the same for the user. In contrast to flowTorch, PyDMD offers a wide
range of DMD variants but does not provide access to data. If an advanced DMD algorithm
is required, our library can be used to access and pre-process a dataset, before PyDMD is used
to perform the modal decomposition.
Another more general issue we want to address is the reproducibility of research outcomes.
Popular algorithms, like POD or DMD, may be relatively easy to implement with libraries
like NumPy, SciPy, or PyTorch. However, applying these algorithms to real datasets typically

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

2

https://www.paraview.org/
https://visit-dav.github.io/visit-website/index.html
https://github.com/belson17/modred
https://pypi.org/project/vtk/
https://doi.org/10.21105/joss.03860

requires several pre-processing steps, like cropping, clipping, or normalizing the data, and
careful tuning of the algorithms’ free parameters (hyperparameters). Therefore, it is often
unclear which exact steps were taken to produce the reported results and how robust the
results are to changes in the free parameters or the data. Even if the authors are willing to
provide more details, essential information may not be accessible due to black-box (closed-
source) analysis tools used somewhere in the process.
With flowTorch, we attempt to make analysis and modeling workflows accessible, stream-
lined, and transparent in several ways:

• we provide Jupyter notebooks with start-to-end workflows, including short explanations
for each step taken in the process; the notebooks’ content varies from toy examples
through common benchmark problems to the analysis of real turbulent flow data; the
datasets used in the notebooks are also part of the library

• the library is modular and often wraps around other libraries to make them easier to use;
a few lines of Python code are sufficient to implement a basic workflow; the modular
structure and the rich documentation of the source code simplify writing extensions and
enable quick automated experimentation

Ultimately, our goal is to reduce redundant work as much as possible and enable users to
focus on what matters - understanding and modeling flow dynamics.

Examples

In this section, we demonstrate two applications of flowTorch. In the first example, DMD
is employed to identify relevant modes in a transonic flow displaying shock-boundary-layer
interactions. In the second example, a ROM of the flow past a circular cylinder (Noack et al.,
2003) is constructed employing CNM (Fernex et al., 2021). Both examples are also available
as Jupyter notebooks and in the flowTorch documentation.

DMD analysis of airfoil surface data

For this example, we need only a handful of flowTorch components.

import torch as pt
from flowtorch import DATASETS
from flowtorch.data import CSVDataloader, mask_box
from flowtorch.analysis import DMD

DATASETS is a dictionary holding names and paths of all available datasets. The CSVDatal
oader provides easy access to the data, and the mask_box function allows selecting only a
spatial subset of the raw data. As the name suggests, the DMD class enables us to perform a
DMD analysis.
The dataset we use here consists of surface pressure coefficient distributions sampled over a
NACA-0012 airfoil in transonic flow conditions. The OpenFOAM configuration files to produce
the dataset are available in a separate GitHub repository. At a Reynolds number of Re = 106,
a Mach number of Ma = 0.75 and α = 4◦ angle of attack, the flow displays a so-called
shock buffet on the upper side of the airfoil. The shock buffet is a self-sustained unsteady
interaction between the shock and the boundary layer separation. Our aim is to extract flow
structures (modes) associated with the buffet phenomenon.
A code snippet to read the data, mask part of it, and build the data matrix reads:

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

3

https://github.com/AndreWeiner/naca0012_shock_buffet
https://doi.org/10.21105/joss.03860

...
path = DATASETS["csv_naca0012_alpha4_surface"]
loader = CSVDataloader.from_foam_surface(

path, "total(p)_coeff_airfoil.raw", "cp")
vertices = loader.vertices
vertices /= (vertices[:, 0].max() - vertices[:, 0].min())
mask = mask_box(vertices,

lower=[-1.0, 0.0, -1.0], upper=[0.9999, 1.0, 1.0])
points_upper = mask.sum().item()
data_matrix = pt.zeros((points_upper, len(times)), dtype=pt.float32)
for i, time in enumerate(times):

snapshot = loader.load_snapshot("cp", time)
data_matrix[:, i] = pt.masked_select(snapshot, mask)

The CSVDataloader has a class method designed to read raw sample data created by Open-
FOAM simulations. Every Dataloader implementation provides access to one or multiple
snapshots of one or multiple fields and the associated vertices. The airfoil coordinates are typ-
ically normalized with the chord length, which is the difference between largest and smallest
value of the x-coordinate in the present example. The data contain pressure coefficients from
both upper and lower surfaces, so we create a spatial mask to extract values from the upper
surface. The DMD expects a data matrix as input whose columns are individual snapshots.
Therefore, we allocate a new 2D tensor with as many rows as selected points and as many
columns as selected snapshots (the data loader also provides access to the available write time
- not shown here). Finally, we loop over the snapshot times and fill the data matrix.
Creating a new DMD instance automatically performs the mode decomposition based on the
provided input. We can analyze the obtained spectrum and the associated modes. The
modes have real and imaginary parts, which are equally important for the reconstruction of
the flow field. It is usually enough to visualize either real or imaginary part for the physical
interpretation of modes.

dmd = DMD(data_matrix, dt, rank=200)
amplitudes = dmd.amplitudes
frequencies = dmd.frequency
modes_real = dmd.modes.real

In contrast to POD, the DMD modes are not sorted by their variance, but rather form a
spectrum. Figure 2 presents the real part of three spatial modes with the largest amplitudes.
Also shown is their corresponding frequency.

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

4

https://doi.org/10.21105/joss.03860

0.05
0.00
0.05

y/
c mode 8

f = 33.33Hz

pressure coefficient DMD modes upper side, real part

0.05
0.00
0.05

y/
c mode 6

f = 26.67Hz

0.0 0.2 0.4 0.6 0.8
x/c

0.05
0.00
0.05

y/
c mode 18

f = 66.67Hz

Figure 2: Real part of three dominant DMD modes over the upper surface of a NACA-0012 airfoil.
The modes are normalized to the range [0, 1]. The coordinates are normalized with the chord c. The
shock is located at x/c ≈ 0.25. Modes 8 and 18 are harmonics. The motion of the shock front is
correlated with changes in the pressure values close to the trailing edge. This effect can be nicely
observed via the mode animations in the documentation and indicates the existence of a physical link
between both effects.

CNM of the flow past a circular cylinder

This example demonstrates how to model a flow using the CNM algorithm (Fernex et al.,
2021). Compared to the original CNM implementation available on GitHub, the version
in flowTorch is refactored, more user-friendly, and extendible. In flowTorch, creating
a ROM always consists of three steps: i) encoding/reduction, ii) time evolution, and iii)
decoding/reconstruction. In the code snippet below, we use an encoder based on the singular
value decomposition (SVD) to reduce the dimensionality of the original snapshot sequence,
and then predict the temporal evolution and reconstruct the flow over the period of 1s.

...
from flowtorch.rom import CNM, SVDEncoder
load data
...
encoder = SVDEncoder(rank=20)
info = encoder.train(data_matrix)
reduced_state = encoder.encode(data_matrix)
cnm = CNM(reduced_state, encoder, dt, n_clusters=20, model_order=4)
prediction = cnm.predict(data_matrix[:, :5], end_time=1.0, step_size=dt)

The predict function computes the temporal evolution in the reduced state space and au-
tomatically performs the reconstruction. If we are only interested in the phase space, we can
use predict_reduced instead, and reconstruct selected states using the encoder’s decode
method. The temporal evolution in the phase-space is displayed in Figure 3.

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

5

https://github.com/fernexda/cnm
https://doi.org/10.21105/joss.03860

750 500 250 0 250 500 750
a1

800

600

400

200

0

200

400

600

800

a 2

0

1
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19
20

21

22

23
24

25

26

27

28

29

Figure 3: Phase-space representation of data clustering (large dots) and trajectory; the numbering
reflects the sequence in which the centroids are visited; the smaller dots mark interpolated time steps
between the centroids and are colored by their cluster affiliation (only for visualization).

Acknowledgements

The authors gratefully acknowledge financial support by the German Research Foundation
(DFG) received within the research unit FOR 2895 Unsteady flow and interaction phenomena
at high speed stall conditions.

References

Brunton, S. L., & Kutz, J. N. (2019). Singular value decomposition (SVD). In Data-driven
science and engineering: Machine learning, dynamical systems, and control (pp. 3–46).
Cambridge University Press. https://doi.org/10.1017/9781108380690.002

Demo, N., Tezzele, M., & Rozza, G. (2018). PyDMD: Python Dynamic Mode Decomposition.
The Journal of Open Source Software, 3(22), 530. https://doi.org/https://doi.org/10.
21105/joss.00530

Fernex, D., Noack, B. R., & Semaan, R. (2021). Cluster-based network modelingfrom snap-
shots to complex dynamical systems. Science Advances, 7(25). https://doi.org/10.1126/
sciadv.abf5006

Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). Dynamic mode
decomposition. Society for Industrial; Applied Mathematics. https://doi.org/10.1137/1.
9781611974508

Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G., & Thiele, F. (2003). A hierarchy
of low-dimensional models for the transient and post-transient cylinder wake. Journal of
Fluid Mechanics, 497, 335–363. https://doi.org/10.1017/S0022112003006694

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

6

https://www.for2895.uni-stuttgart.de/en/
https://doi.org/10.1017/9781108380690.002
https://doi.org/10.21105/joss.00530
https://doi.org/10.21105/joss.00530
https://doi.org/10.1126/sciadv.abf5006
https://doi.org/10.1126/sciadv.abf5006
https://doi.org/10.1137/1.9781611974508
https://doi.org/10.1137/1.9781611974508
https://doi.org/10.1017/S0022112003006694
https://doi.org/10.21105/joss.03860

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656, 5–28. https://doi.org/10.1017/S0022112010001217

Semaan, R., Fernex, D., Weiner, A., & Noack, B. R. (2020). xROM: A toolkit for reduced-
order modeling of fluid flows (R. Semaan & B. R. Noack, Eds.; First Edition, Vol. 1). Tech-
nische Universität Braunschweig. https://doi.org/10.24355/dbbs.084-202007011404-0

Silva, B. de, Champion, K., Quade, M., Loiseau, J.-C., Kutz, J., & Brunton, S. (2020).
PySINDy: A python package for the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49), 2104. https://doi.org/10.21105/
joss.02104

Weiner et al., (2021). flowTorch - a Python library for analysis and reduced-order modeling of fluid flows. Journal of Open Source Software,
6(68), 3860. https://doi.org/10.21105/joss.03860

7

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.24355/dbbs.084-202007011404-0
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.03860

	Summary
	Statement of need
	Examples
	DMD analysis of airfoil surface data
	CNM of the flow past a circular cylinder

	Acknowledgements
	References

