
BioProv - A provenance library for bioinformatics
workflows
Vinícius W. Salazar∗1, 4, João Vitor Ferreira Cavalcante2, Daniel de
Oliveira3, Fabiano Thompson4, and Marta Mattoso1

1 Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro
2 Bioinformatics Multidisciplinary Environment - BioME, IMD, Federal University of Rio Grande do
Norte 3 Institute of Computing, Fluminense Federal University 4 Institute of Biology, Federal
University of Rio de Janeiro

DOI: 10.21105/joss.03622

Software
• Review
• Repository
• Archive

Editor: Jacob Schreiber
Reviewers:

• @maximtrp
• @Zethson

Submitted: 22 July 2021
Published: 09 November 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

In an era where it can be argued that all biology is computational biology (Markowetz, 2017),
properly managing computational analyses and data is crucial to evaluate the findings of
in silico experiments. A major aspect of best practices in scientific computing is managing
the provenance of data analysis workflows (Irving et al., 2021; Pasquier et al., 2017; Wilson
et al., 2017). The World Wide Web Consortium (W3C) Provenance Working Group defines
provenance as “a record that describes the people, institutions, entities, and activities involved
in producing, influencing, or delivering a piece of data or a thing” (Moreau & Groth, 2013).
Therefore, for bioinformatics workflows (BWFs), where there are usually numerous steps in
data processing, capturing and storing provenance rapidly becomes a challenge. This prove-
nance data should not only be comprehensible to humans, but structured and queryable; this
is to support reproducibility in present and future research in bioinformatics and many other
fields of scientific research (Kanwal et al., 2017; Pasquier et al., 2017). A proposed standard
for interoperability of provenance data is the W3C-PROV data model, specifically designed to
share provenance data across the web and among diverse applications and systems. Adding
provenance to BWFs can be costly to both developers, responsible for storing information
about these workflows, and researchers designing and analyzing workflow results. While some
workflow systems already provide provenance capturing, modelling bioinformatics data in com-
pliance with W3C-PROV is not automatic, requiring great effort from workflow developers and
researchers. We introduce BioProv as a library that aims to facilitate the creation of W3C-
PROV compliant documents for BWFs, automatically capturing the provenance of workflow
steps between different users and computing environments.

W3C-PROV

The W3C-PROV recommendation is endorsed by the World Wide Web Consortium (W3C),
the leading global community for web standards. It divides provenance data into three separate
views (Figure 1): the data flow view, comprised of entities, that are any physical, digital or
conceptual thing; the process flow view, that focuses on activities, that are processes that
happen over time and act upon or with entities, either by consuming, processing, using, or
generating them; and the responsibility view, that concerns the assignment of agents that are
responsible for entities, activities, or other agents. These three elements of provenance have
a set of seven relations between them, that can be further described by relation patterns. For
a full introduction to the W3C-PROV standard, we recommend Moreau & Groth (2013).

∗Corresponding author

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

1

https://doi.org/10.21105/joss.03622
https://github.com/openjournals/joss-reviews/issues/3622
https://github.com/vinisalazar/BioProv/
https://doi.org/10.5281/zenodo.5550568
https://jmschrei.github.io/
https://github.com/maximtrp
https://github.com/Zethson
http://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/prov-dm/
https://www.w3.org/Consortium
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

Figure 1: Schematic view of the W3C-PROV data model. Adapted from Moreau & Groth (2013).

Statement of need

BioProv is a Python library for generating provenance documents of bioinformatics work-
flows. The challenge of provenance capture in the field of bioinformatics has been charac-
terized and is standing for more than a decade (Stevens et al., 2007). Presently, there are
many freely available tools for managing provenance through workflow systems (Afgan et al.,
2018; Di Tommaso et al., 2017; Hull et al., 2006; Köster & Rahmann, 2012; Oliveira et al.,
2012; Vivian et al., 2017) and provenance systems for capturing and storing provenance data
from workflow scripts (Khan et al., 2019; Silva et al., 2018). Several studies have been able
to implement solutions that model BWFs and adequately capture and store provenance data
(K. Ocaña et al., 2014; K. A. C. S. Ocaña et al., 2015; Paula et al., 2013). However, to the
best of our knowledge, there is not yet any software library that specializes in capturing the
provenance of BWFs. In the case of workflow management systems, they provide execution
reports such as execution trace or graph, but these documents are not W3C-PROV compliant
and/or are not serializable, or the collection of domain-specific information must be manually
designed by the user with an ad hoc approach. Domain-specific data are particularly relevant
in BWFs, as they can be used to help researchers make decisions and steer workflow param-
eters during runtime (Costa et al., 2013). They refer to metadata that are characteristic
of biological data formats, e.g. the distribution of the length of sequences in a nucleotide
sequence file, or the number of nodes in a phylogenetic tree file. Implementing a system to
capture these data can be very costly to both users and developers of BWFs, as most prove-
nance capture software are generic and do not support, for example, parsing of biological data
formats. This may imply the need to either manually develop specific parsing solutions for
the files involved or to create database schemas that support domain-specific data. BioProv
attempts to fill this gap, by providing features that support the specificities of bioinformatics
applications and allow the automatic capture of provenance data and generation of documents
in a W3C-PROV compliant format.

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

2

https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

Features and data modelling

Overview

BioProv represents the provenance elements of a BWF into a class called Project, that rep-
resents the execution of a bioinformatics workflow (a sequence of programs) using a particular
dataset. An instance of Project is composed by related samples, files and programs that
are represented by corresponding classes from the BioProv library. The Project class has
specific methods that allow for the user to specify the relationships between objects, such
as a file, a biological sample or a computer program. Projects also carry information about
agents, i.e. users and computing environments used to execute programs. In the context
of BioProv, a “Project” is distinct from a “Workflow” in the sense that a Project refers to
a particular set of samples and files and associated programs, while a Workflow refers to a
sequence of programs that can be run on a set of adequate input files. A user can therefore
use the same Workflow for multiple Projects. Because they are serializable in JSON and
tabular formats, BioProv objects can be stored and shared across computing environments,
and can be exported as W3C-PROV compliant documents, allowing better integration with
web-based systems. The library can be used interactively, in an environment such as Jupyter
(Ragan-Kelley et al., 2014), or from the application’s command line interface (CLI). The CLI
component of BioProv allows users to quickly launch custom workflows from the command
line using the bioprov <workflow_name> command.

Figure 2: Architecture of a BioProv application.

BioProv is built on top of the BioPython (Cock et al., 2009) library, which has the capacity to
parse common bioinformatics file formats, and supports several file formats for both sequence
and alignment data, allowing the user to easily extract domain data without having to write
any parsers. Here we present some of the core features of BioProv, but for a more complete

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

3

https://biopython.org/wiki/SeqIO
https://biopython.org/wiki/AlignIO
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

introduction, we recommend the package’s tutorials in Jupyter Notebook format, that can
also be launched via Binder, and the documentation page. As example data, we provide five
small bacterial genomes and a BLAST database that is a subset of MEGARES (Lakin et al.,
2017). These two datasets can be used to demonstrate the installation and to illustrate some
of the core features of BioProv.

Classes

BioProv implements several classes in order to represent provenance data extracted from
BWfs. Its object-oriented design allows for users to benefit from the flexibility of working with
extensible Python objects, that are familiar to frameworks such as the libraries in the scientific
Python stack: NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), Matplotlib (Hunter,
2007), and others. The five main classes are:

• Project: The higher-level structure that represents core project information, like sam-
ples, files, and programs.

• Sample: Describes biological samples. Contains collections of files and programs, and
can group any sample attributes, such as collection date, collection site, type of sample
(soil, water, tissue, etc.).

• File: Describes computer files that may be associated with a Sample or Project.
• Program: Describes programs that process and create files. Instances of Program are

associated to instances of the Parameter and Run classes (the latter representing a
program execution).

• Environment: Describes an environment that was used to run a program, including
environment variables and library versions.

A Project instance is the top-level object in the BioProv library. It is composed by Samples,
Files, and Programs. A Sample instance represents any biological sample, its attributes, and
it is composed by Files and Programs that are associated with that particular sample. Files
and Programs are associated with the Project when they contain or process information
from multiple samples. In the provenance data model, instances of the Project, Sample,
and File classes are represented as entities, and instances of Program are represented as
activities. Instances of Environment are represented as agents that act on behalf of the
current user.
BioProv detects the current user and environment variables and stores them alongside the
Project; each Program, when executed, is automatically associated with the current computing
environment (Figure 3). This way, BioProv can represent which execution is associated with
each user and environment, allowing for traceable collaborative work.
These five classes constitute the basis of a BioProv project. The library captures provenance
data through instances of these classes. For Samples, it stores the sample’s attributes, a
collection of files, and a collection of programs. For both Files and Programs, relevant infor-
mation is automatically captured, such as the start and end time of each program execution
and file size of each file. Files containing biological sequences that are supported by BioPython
can be parsed with the SeqFile class. This class inherits from File and can extract metadata
about the file contents, such as number of sequences, number of base pairs, GC content (if it
is a nucleotide file), and other metrics. This feature allows users to extract domain data for
their provenance documents by using parsers available in BioPython.
Programs in BioProv can be created manually or loaded as a preset. BioProv offers a few
preset programs for common bioinformatics tasks, such as sequence alignment search, multiple
sequence alignment, gene prediction and quantification of gene expression. Running a program
with BioProv instead of directly from the command-line automatically captures provenance
information for that execution. Some of the included programs are:

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

4

https://github.com/vinisalazar/BioProv/blob/master/docs/tutorials/introduction.ipynb
https://mybinder.org/v2/gh/vinisalazar/bioprov/master?filepath=docs%2Ftutorials%2F
https://bioprov.readthedocs.io/
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

• BLAST+: sequence alignment search (Camacho et al., 2009)
• Diamond: sequence alignment search (Buchfink et al., 2014)
• MAFFT: multiple sequence alignment (Katoh et al., 2005)
• Muscle: multiple sequence alignment (Edgar, 2004)
• Prodigal: prokaryotic gene prediction (Hyatt et al., 2010)

Figure 3: Diagram showing relationships between classes in the BioProv library. Each class is related
to a PROV element, depicted above the class name. The color scheme is the same as in Figure 1
(entities in yellow, activities in blue, agents in orange).

Users can create their own presets with either the Program class or the PresetProgram
class, that inherits from Program and possesses additional methods for batch execution.
To manually create programs (that are not presets), the user should create the program as
it is called from the command line, and add Parameters to it. A Parameter is another
BioProv class that represents specific parameters associated with a program. Presets contain
parameters specific to that program. Parameters can be added to the command string that
will be evaluated on the system’s shell, by means of Python’s subprocess module. For a
more complete walkthrough of how to build programs and add them to the workflow, please
refer to the tutorials. Additionally, workflow presets can be created. Workflow presets are a
sequence of programs which are to be executed on a project’s files. These presets can then
be run using the library’s CLI, as their command-line arguments and parser are constructed
automatically.

Workflow execution with BioProv

To set up a workflow with BioProv to capture provenance data, users must either write a
Python script and replace usual program calls with BioProv code, or launch custom or preex-
isting preset workflows from the CLI. Again, the tutorials and documentation page are the best

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

5

https://docs.python.org/3/library/subprocess.html
https://github.com/vinisalazar/BioProv/blob/master/docs/tutorials/introduction.ipynb
https://github.com/vinisalazar/BioProv/blob/master/docs/tutorials/introduction.ipynb
https://bioprov.readthedocs.io/
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

resources on how to do this. Once this is done, data must be imported as a BioProv project
so the workflow can be executed. In the following section, we provide a brief demonstration
of how to import data and run programs.

Importing data

There are a few ways to import and export data with BioProv. If a project has not been
previously imported, the most convenient way to import it is by generating a table containing
one sample per row, and columns with the path to each file associated with that sample.
Columns that are not files will be processed as sample attributes. For example, assume the
following table:

sample-id assembly report source
sample_1 contigs_1.fasta report_1.txt seawater
sample_2 contigs_2.fasta report_2.txt soil

The sample-id column is our index, i.e. each sample is identified by it. The assembly column
contains the path to the genome assembly of each sample (therefore, a “sequence file”). The
report column points to a plain text file containing the assembly report (therefore, a “file”).
The other columns will be parsed as sample attributes. This can be easily done with the
read_csv() function:

In [1]: import bioprov as bp

In [2]: project = bp.read_csv("myTable.csv",
file_cols="report",
sequencefile_cols="assembly",
tag="myProject",
import_data=True)

The table from which the data was sourced is automatically added as a Project file:

In [3]: project.files
Out[3]: {'project_csv': /home/user/myProject/myTable.csv}

And Samples are created with associated files and attributes:

In [4]: project["sample_1"]
Out[4]: Sample sample_1 with 2 file(s).

In [5]: project["sample_1"].files
Out[5]:
{'report': /home/user/myProject/report_1.txt,
'assembly': /home/user/myProject/contigs_1.fasta}

In [6]: project["sample_1"].attributes
Out[6]: {'source': 'seawater'}

Sequence metadata is extracted from sequence files, as set by the import_data=True pa-
rameter:

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

6

https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

In [7]: project["sample_1"].files["assembly"].GC
Out[7]: 0.36442

To run a program using BioProv, it must be added to the project or to a sample. We can use
the preset prodigal program to illustrate this. Prodigal runs a gene prediction algorithm for
prokaryotic genomes, and creates three output files:
Now that the project is loaded, the user can add new files, samples and programs. Programs
can run and execution provenance is captured (such as stdout and stderr, start and end time,
and files involved).

In [8]: from bioprov.programs import prodigal

In [9]: project["sample_1"].add_programs(prodigal)

In [10]: project["sample_1"].run_programs()

To export the project, there are a few options. The user can either:

• export the project in a tabular format such as the one presented in myTable.csv. This
omits project information (about programs, for example), but preserves information of
samples and files. This action is done with the Project.to_csv() method;

• export the project as JSON, the preferred option, as BioProv can deserialize this format
back into a Project object with all related information; This is done with the Projec
t.to_json() method;

• store the project in BioProv’s database. BioProv has a builtin document-oriented
database, as explained in the following section.

In [11]: project.to_csv() # exports in tabular format

In [12]: project.to_json() # exports as JSON

In [13]: project.update_db() # stores in the BioProv database
Inserting new project 'myProject' in /path/to/bioprov/db.json

Database system

BioProv has an internal database based on TinyDB, a document-oriented, pure Python
database. Projects can be loaded by their ID (the Project.tag attribute) and can be
updated during runtime, by setting the Project.auto_update = True option. Assuming
the user has run the previous code example, this could be done in a new session:

In [1]: import bioprov as bp

In [2]: project = bp.load_project("myProject") # call projects by their tag

In [3]: project.auto_update = True

Now all future modifications to myProject will auto-update its record in BioProv’s database.
The database can be managed from BioProv’s CLI application.
To query an existing project, it must be loaded with the load_project() function, and it
can then be queried with Python syntax. The Project’s .samples, .files and .programs

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

7

https://tinydb.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

attributes are Python dictionaries, and can be manipulated as so. A Sample instance will also
contain .files and .programs, and additionally a .attributes dictionary with additional
information about the sample (e.g. the source column in our data table). When iterating
over a Project object, we can loop over each sample:

In [4]: for sample in project:
...: # loop over samples
...: source = sample.attributes['source']
...: print(sample.name, 'is a', source, 'sample.')
...:
...: # make conditional statements
...: if 'prodigal' in sample.program.keys():
...: print(sample.name,
...: 'contains an instance of the Prodigal program.')

sample_1 is a seawater sample.
sample_2 is a soil sample.
sample_1 contains an instance of the Prodigal program.

Being able to query BioProv objects with Python syntax allows users familiar with the language
to create custom queries and functions, and integrate BioProv into their existing Python
applications. Additionally, it is possible to use a tool such as the ObjectPath library, that
implements a query language for semi-structured data, and is compatible with BioProv’s
JSON outputs.

Command line application and workflows

To use the CLI, after installing, type bioprov in the system’s Shell:

~/ $ bioprov
usage: bioprov [-h]

[--show_config | --show_provstore | --create_provstore |
--show_db | --clear_db | -v | -l]

{genome_annotation,blastn,kaiju} ...

BioProv command-line application. Choose a command to begin.

optional arguments:
-h, --help show this help message and exit
--show_config Show location of config file.
--show_provstore Show location of ProvStore credentials file.
--create_provstore Create ProvStore credentials file.
--show_db Show location of database file.
--clear_db Clears all records in database.
-v, --version Show BioProv version
-l, --list List Projects in the BioProv database.

workflows:
{genome_annotation,blastn,kaiju}

The bioprov --show_db and bioprov --list commands, for example, can be used to
show the location of BioProv’s database and list all projects it contains. The workflows are
preset sequences of programs that can be run directly from the CLI. They are implemented

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

8

http://objectpath.org/
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

with BioProv’s Workflow class and handle the creation of the BioProv project while running
the desired workflow. Users can write their own workflow and the command-line parser will
be automatically generated based on the parameters set by the user. For more information,
please refer to BioProv’s workflows subpackage, where preset workflows are stored, or run
the bioprov <workflow_name> command in the CLI for help about a particular workflow.
Presently, BioProv workflows are limited, serving mainly as a reference for users to write their
own workflows; one of the main future goals of the library is to support a range of common
BWFs. We actively encourage users to contribute their workflows by following the contributing
guidelines or request one by opening an issue in the repository.

Provenance documents

To create W3C-PROV documents, BioProv utilizes the PROV library (Dong, 2020), and
models its native objects onto the three PROV elements: entities, agents, and activities
(Moreau & Groth (2013) provide a detailed description of PROV concepts). To do this, a
BioProvDocument object is created from project. A W3C-PROV compatible document
is then created, with associated relationships between PROV elements for each object of
the project. BioProv defines one “bundle” for the project, and one for each sample and
user. Bundles are documents nested within the top-level BioProvDocument, used to describe
individual entities (for the Sample bundles) or agents (for the user bundles). Computing
environments are also regarded as agents, that act on behalf of users through activities (that
correspond to BioProv’s Program instances). By leveraging the PROV library, the resulting
document can be exported in a number of ways, such as graphical format and PROV-N (a
human-readable provenance format).
The following code generates the Figure 4 and a PROV-N record.

In [5]: prov = bp.BioProvDocument(project)

In [6]: prov.write_provn()

In [7]: prov.dot.write_pdf("myProject.pdf")

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

9

https://github.com/vinisalazar/BioProv/tree/master/bioprov/workflows
https://github.com/vinisalazar/BioProv/blob/master/CONTRIBUTING.md
https://github.com/vinisalazar/BioProv/blob/master/CONTRIBUTING.md
https://www.w3.org/TR/prov-n/
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

Figure 4: Provenance graph created by BioProv with the PROV and PyDot libraries. This graph
represents a Project containing two samples associated with bacterial genomes. The prodigal
program uses the assembly file as input to create the proteins, genes, and scores files. The
square shapes grouping sets of icons correspond to each bundle in the project.

Lastly, BioProvDocuments can be uploaded to ProvStore, a web service for storage and
visualization of W3C-PROV documents. The credentials to the ProvStore API are set with
the bioprov --create_provstore command, and a document can be uploaded with the
upload_to_provstore() method:

In [8]: prov.upload_to_provstore()

This feature enables the immediate publication of provenance documents that have a uniform
resource identifier (URI) through their ProvStore address. Future developments for further
supporting the W3C-PROV standard in the field of bioinformatics should focus on integrating
more web services, such as NCBI Entrez and Wikidata, for continuous improvement of the
reproducibility of BWFs.

Conclusion

We present a software library that allows users to create and run bioinformatics workflows
while capturing provenance data during runtime, that can then be exported as W3C-PROV
compliant documents. Provenance data can be imported and exported in widely-used and
web-compatible formats, and this provenance is enriched with domain-specific data without
much effort from the user. BioProv is written entirely in Python, benefitting from numerous
existing libraries that complement it, and its objects can be extended and customized to
suit users’ needs. This results in a simple, lightweight yet powerful library that can make
Python workflows provenance-aware, setting BioProv as a valuable addition to the ecosystem
of bioinformatics workflow tools.

Acknowledgements

We would like to thank the funding agencies CNPq, FAPERJ, and CAPES.

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

10

https://openprovenance.org/store/
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

References

Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Čech, M., Chilton, J.,
Clements, D., Coraor, N., Grüning, B. A., & others. (2018). The galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids
Research, 46(W1), W537–W544. https://doi.org/10.1093/nar/gkaa554

Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using
DIAMOND. https://doi.org/10.1038/nmeth.3176

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden,
T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421.

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B., & De Hoon, M. J. L. (2009). Biopython: Freely
available Python tools for computational molecular biology and bioinformatics. Bioinfor-
matics. https://doi.org/10.1093/bioinformatics/btp163

Costa, F., Silva, V., De Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., & Mattoso, M.
(2013). Capturing and querying workflow runtime provenance with PROV: A practical
approach. ACM International Conference Proceeding Series, April, 282–289. https://doi.
org/10.1145/2457317.2457365

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C.
(2017). Nextflow enables reproducible computational workflows. Nature Biotechnology,
35(4), 316–319. https://doi.org/10.1038/nbt.3820

Dong, T. (2020). PROV: A Python library for W3C Provenance Data Model. In GitHub
repository. GitHub.

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/
gkh340

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy (No. 7825; Vol. 585, pp. 357–362).
https://doi.org/10.1038/s41586-020-2649-2

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., & Oinn, T. (2006).
Taverna: A tool for building and running workflows of services. Nucleic Acids Research,
34(suppl_2), W729–W732.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010).
Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC
Bioinformatics, 11, 119. https://doi.org/10.1186/1471-2105-11-119

Irving, D., Hertweck, K., Johnston, L., Ostblom, J., Wickham, C., & Wilson, G. (2021).
Research software engineering with python: Building software that makes research possible.
CRC Press/Taylor; Francis. ISBN: 978-0367698348

Kanwal, S., Khan, F. Z., Lonie, A., & Sinnott, R. O. (2017). Investigating reproducibility and
tracking provenance - A genomic workflow case study. BMC Bioinformatics, 18(1), 337.
https://doi.org/10.1186/s12859-017-1747-0

Katoh, K., Kuma, K. I., Toh, H., & Miyata, T. (2005). MAFFT version 5: Improvement
in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518.
https://doi.org/10.1093/nar/gki198

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

11

https://doi.org/10.1093/nar/gkaa554
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1145/2457317.2457365
https://doi.org/10.1145/2457317.2457365
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1186/1471-2105-11-119
https://worldcat.org/isbn/978-0367698348
https://doi.org/10.1186/s12859-017-1747-0
https://doi.org/10.1093/nar/gki198
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

Khan, F. Z., Soiland-Reyes, S., Sinnott, R. O., Lonie, A., Goble, C., & Crusoe, M. R. (2019).
Sharing interoperable workflow provenance: A review of best practices and their practi-
cal application in CWLProv. GigaScience, 8(11). https://doi.org/10.1093/gigascience/
giz095

Köster, J., & Rahmann, S. (2012). Snakemake-a scalable bioinformatics workflow engine.
Bioinformatics, 28(19), 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Lakin, S. M., Dean, C., Noyes, N. R., Dettenwanger, A., Ross, A. S., Doster, E., Rovira,
P., Abdo, Z., Jones, K. L., Ruiz, J., Belk, K. E., Morley, P. S., & Boucher, C. (2017).
MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic
Acids Research, 45(D1), D574–D580. https://doi.org/10.1093/nar/gkw1009

Markowetz, F. (2017). All biology is computational biology. PLoS Biology, 15(3), 4–7.
https://doi.org/10.1371/journal.pbio.2002050

Moreau, L., & Groth, P. (2013). Provenance: An introduction to PROV. Synthesis Lectures
on the Semantic Web: Theory and Technology, 3(4), 1–129. https://doi.org/10.2200/
S00528ED1V01Y201308WBE007

Ocaña, K. A. C. S., Oliveira, D. de, Silva, V., Benza, S., & Mattoso, M. (2015). Exploit-
ing the parallel execution of homology workflow alternatives in HPC compute clouds.
Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 8954, 336–350. https://doi.org/10.1007/
978-3-319-22885-3_29

Ocaña, K., Benza, S., De Oliveira, D., Dias, J., & Mattoso, M. (2014). Exploring large
scale receptor-Ligand pairs in molecular docking workflows in HPC clouds. Proceedings
of the International Parallel and Distributed Processing Symposium, IPDPS, 536–545.
https://doi.org/10.1109/IPDPSW.2014.65

Oliveira, D. de, Ocaña, K. A., Baião, F., & Mattoso, M. (2012). A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. Journal of Grid Computing,
10(3), 521–552. https://doi.org/10.1007/s10723-012-9227-2

Pasquier, T., Lau, M. K., Trisovic, A., Boose, E. R., Couturier, B., Crosas, M., Ellison, A.
M., Gibson, V., Jones, C. R., & Seltzer, M. (2017). If these data could talk. Scientific
Data, 4, 1–5. https://doi.org/10.1038/sdata.2017.114

Paula, R. de, Holanda, M., Gomes, L. S. A., Lifschitz, S., & Walter, M. E. M. T. (2013).
Provenance in bioinformatics workflows. BMC Bioinformatics, 14 Suppl 1(Suppl 11), S6.
https://doi.org/10.1186/1471-2105-14-S11-S6

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., & Bussonnier,
M. (2014). The Jupyter/IPython architecture: a unified view of computational research,
from interactive exploration to communication and publication. AGU Fall Meeting Ab-
stracts.

Silva, V., Oliveira, D. de, Valduriez, P., & Mattoso, M. (2018). DfAnalyzer: Runtime Dataflow
Analysis of Scientific Applications using Provenance. 11(12), 2082–2085. https://doi.org/
10.14778/3229863.3236265

Stevens, R., Zhao, J., & Goble, C. (2007). Using provenance to manage knowledge of In
Silico experiments. Briefings in Bioinformatics, 8(3), 183–194. https://doi.org/10.1093/
bib/bbm015

Stevens, R., Zhao, J., & Goble, C. (2007). Using provenance to manage knowledge of In
Silico experiments. Briefings in Bioinformatics, 8(3), 183–194. https://doi.org/10.1093/
bib/bbm015

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

12

https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/nar/gkw1009
https://doi.org/10.1371/journal.pbio.2002050
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.1007/978-3-319-22885-3_29
https://doi.org/10.1007/978-3-319-22885-3_29
https://doi.org/10.1109/IPDPSW.2014.65
https://doi.org/10.1007/s10723-012-9227-2
https://doi.org/10.1038/sdata.2017.114
https://doi.org/10.1186/1471-2105-14-S11-S6
https://doi.org/10.14778/3229863.3236265
https://doi.org/10.14778/3229863.3236265
https://doi.org/10.1093/bib/bbm015
https://doi.org/10.1093/bib/bbm015
https://doi.org/10.1093/bib/bbm015
https://doi.org/10.1093/bib/bbm015
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nature Methods. https://doi.org/10.1038/s41592-019-0686-2

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J.,
Narkizian, J., Deran, A. D., Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B.,
Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna, M., Birger, C., … Paten,
B. (2017). Toil enables reproducible, open source, big biomedical data analyses (No. 4;
Vol. 35, pp. 314–316). https://doi.org/10.1038/nbt.3772

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good
enough practices in scientific computing. PLOS Computational Biology, 13(6), e1005510.
https://doi.org/10.1371/journal.pcbi.1005510

Salazar et al., (2021). BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 6(67), 3622. https:
//doi.org/10.21105/joss.03622

13

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.21105/joss.03622
https://doi.org/10.21105/joss.03622

	Summary
	W3C-PROV

	Statement of need
	Features and data modelling
	Overview
	Classes
	Workflow execution with BioProv
	Importing data

	Database system
	Command line application and workflows

	Provenance documents
	Conclusion
	Acknowledgements
	References

