
BisPy: Bisimulation in Python
Francesco Andreuzzi1,2

1 Internation School of Advanced Studies, SISSA, Trieste, Italy 2 Università degli Studi di Trieste
DOI: 10.21105/joss.03519

Software
• Review
• Repository
• Archive

Editor: Matthew Sottile
Reviewers:

• @jonjoncardoso
• @mschordan
• @zoometh

Submitted: 13 July 2021
Published: 28 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

A binary relation B on the set V of the nodes of a directed graph is a bisimulation if the
following condition is satisfied (Gentilini et al., 2003):

(a, b) ∈ B =⇒

{
a → a′ =⇒ ∃b′ ∈ V | (a′, b′) ∈ B ∧ b → b′

b → b′ =⇒ ∃a′ ∈ V | (a′, b′) ∈ B ∧ a → a′
(1)

A labeling function ℓ : V → L may be introduced, in which case the graph becomes a Kripke
structure and the additional condition (a, b) ∈ B =⇒ ℓ(a) = ℓ(b) must be satisfied.

Figure 1: On the left, a balanced tree paired with a labeling function, which induces a partition
on V of cardinality 2. We visually represent the corresponding maximum bisimulation on the right,
computed using BisPy.

The notion of bisimulation and in particular of maximum bisimulation — namely the bisim-
ulation which contains all the other bisimulations on the graph — has applications in modal
logic, formal verification, and concurrency theory (Kanellakis & Smolka, 1990), and is used
for graph reduction as well (Gentilini et al., 2003). The fact that graphs may be used to
create digital models of a wide span of complex systems makes bisimulation a useful tool in
many different cases. For this reason several algorithms for the computation of maximum
bisimulation have been studied throughout the years, and it is now known that the problem
has an O(|E| log |V |) algorithmic solution (Paige & Tarjan, 1987), where V is the set of nodes
in the graph, and E is the set of edges of the graph.
BisPy is a Python package for the computation of maximum bisimulation.

Andreuzzi, F., (2021). BisPy: Bisimulation in Python. Journal of Open Source Software, 6(65), 3519. https://doi.org/10.21105/joss.03519 1

https://doi.org/10.21105/joss.03519
https://github.com/openjournals/joss-reviews/issues/3519
https://github.com/fAndreuzzi/BisPy
https://doi.org/10.5281/zenodo.5532910
https://computing.llnl.gov/casc
https://github.com/jonjoncardoso
https://github.com/mschordan
https://github.com/zoometh
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03519

Statement of need

To the best of our knowledge, BisPy is the first Python project to address the problem
presented above, and to meet the objectives of healthy open source software, namely extensive
testing, documentation, and intuitive code commenting.
We think that our project may be a useful tool to study practical cases for students approaching
the field — since the notion of bisimulation may be somewhat counterintuitive at first glance
— as well as for established researchers, who may use BisPy to study improvements on
particular types of graphs and to compare new algorithms with the state of the art.
It is interesting to observe that the package BisPy, briefly presented below, contains the
implementation of more than one algorithm for the computation of maximum bisimulation,
and every algorithm uses a peculiar strategy to obtain the result. For this reason, we think that
our package may be useful to assess the performance of different approaches on a particular
problem.

BisPy

Our package contains the implementation of the following algorithms:

• Paige-Tarjan (1987), which employs an insight from the famous algorithm for the min-
imization of finite states automata (Hopcroft, 1971);

• Dovier-Piazza-Policriti (2001), which uses the notion of rank to optimize the overhead
of splitting the initial partition, and can be computed — prior the execution of the
algorithm — using an O(|V |+ |E|) procedure (Sharir, 1981; Tarjan, 1972);

• Saha (2007), which can be used to update the maximum bisimulation of a graph after
the addition of a new edge, and is more efficient than the computation from scratch
in some cases (the computational complexity depends on how much the maximum
bisimulation changes due to the modification).

Our implementations have been tested and documented deeply; moreover we split the algo-
rithms into smaller functions, which we prefer to having a monolithic block of code in order to
improve readability and testability. This kind of modularity allows us to reuse functions across
multiple algorithms, since several procedures are shared (e.g., split is used in all three of the
algorithms that we mentioned above, while the computation of rank is carried out only in the
last two), and for the same reason we think that the addition of new functionalities would be
straightforward since we have already implemented a significant set of common functions.

Example

We present the code that we used to generate the example shown in Figure 1. First of all we
import the modules needed to generate the graph (BisPy takes NetworkX directed graphs in
input) and to compute the maximum bisimulation.

>>> import networkx as nx
>>> from bispy import compute_maximum_bisimulation

After that we generate the graph, which as we mentioned before is a balanced tree with
branching-factor=2 and depth=3. We also create a list of tuples that represents the labeling
function which we employed in the example.

Andreuzzi, F., (2021). BisPy: Bisimulation in Python. Journal of Open Source Software, 6(65), 3519. https://doi.org/10.21105/joss.03519 2

https://doi.org/10.21105/joss.03519

>>> graph = nx.balanced_tree(2,3, create_using=nx.DiGraph)
>>> labels = [(0,1,2,3,4,5,6,7,9,10,11,12,13),(8,14)]

We can now compute the maximum bisimulation of the Kripke structure taken into account
as follows:

>>> compute_maximum_bisimulation(graph, labels)
[(4,5),(7,9,10,11,12,13),(8,14),(3,6),(0,),(1,2)]

The visualization shown above has been drawn using the library PyGraphviz. BisPy provides
the requested output in the form of a list of tuples, each of which contains the labels of all
the nodes that are members of an equivalence class of the maximum bisimulation.

Performance

We briefly examine some performance results on two different kinds of graphs:

• Balanced trees (Cormen et al., 2009) with variable branching factor r and height h, for
which we are going to use the notation BT (r, h);

• Erdős-Rényi graphs (2009), also called binomial graphs, whose set E of edges is gener-
ated randomly (the cardinality |E| is roughly p|V |).

The first experiment involves balanced trees, and consists of the computation of the maximum
bisimulation of trees with variable dimensions. The labeling set is the trivial partition of the
set V . The results are shown in the left side of Figure 2. The quantity that varies along the
x-axis is |E| log |V |, since this allows the presentation of data in a more natural way.
The performance complies with the expected complexity |E| log |V |: for instance our im-
plementation of Dovier-Piazza-Policriti takes about 1.425 seconds to compute the maxi-
mum bisimulation on BT (3, 10), and 12.596 seconds on BT (3, 12). The value of the ra-
tio |EBT (3,12)| log |VBT (3,12)|

|EBT (3,10)| log |VBT (3,10)|
is approximately 10.7, therefore the growth of the time function

respects approximately the predicted behavior.
Concerning binomial graphs, we fixed p = 0.0005 in order to obtain a graph of some practical
interest (as p → 1 the graph becomes complete, as p → 0 also |E| → 0). This time we also
consider Saha’s incremental algorithm, and we conduct the experiment as follows:

1. Generate a binomial graph with the aforementioned features;
2. Compute the maximum bisimulation using Paige-Tarjan’s algorithm;
3. Add a random edge to the graph;
4. Compute the updated maximum bisimulation three times, using the three algorithms

taken into account, and verify the time taken by each one.

Since the experiment is not deterministic (the graph and the new edge are generated randomly)
we evaluate and visualize the mean time taken by step 4 on a sample of 1000 iterations of
steps 1-4.
The knowledge of the old maximum bisimulation is of no interest for non-incremental algo-
rithms. However Saha’s algorithm uses this input to reduce the number of steps: the goal of
the second experiment is in fact to illustrate this improvement. The results are shown in the
right side of Figure 2.

Andreuzzi, F., (2021). BisPy: Bisimulation in Python. Journal of Open Source Software, 6(65), 3519. https://doi.org/10.21105/joss.03519 3

https://doi.org/10.21105/joss.03519

Figure 2: On the left side of the figure, the time taken by our implementations of Paige-Tarjan
and Dovier-Piazza-Policriti to compute the maximum bisimulation of balanced trees with variable
branching factor and height. On the right side, the time needed to update the maximum bisimulation
of a binomial graph after the addition of a random edge (for this experiment we also consider Saha’s
incremental algorithm).

We ran the experiments on a workstation with operating system CentOS Linux, (x8664),
processor Intel(R) Core(TM) i7-4790 CPU (4 cores, 3.60GHz), and 16 GB RAM. Graphs have
been generated using functions from the Python package _NetworkX (Hagberg et al., 2008).
We measured time using the Python module timeit (Van Rossum & Drake, 2009).

Acknowledgements

We acknowledge the support received from Alberto Casagrande during the preliminar theoret-
ical study of the topic, as well as SISSA mathLab for providing the hardware used to perform
experiments on large graphs.

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms,
3rd edition. MIT Press. ISBN: 978-0-262-03384-8

Dovier, A., Piazza, C., & Policriti, A. (2001). A fast bisimulation algorithm. Interna-
tional Conference on Computer Aided Verification, 79–90. https://doi.org/10.1007/
3-540-44585-4_8

Gentilini, R., Piazza, C., & Policriti, A. (2003). From bisimulation to simulation: Coarsest
partition problems. Journal of Automated Reasoning, 31(1), 73–103. https://doi.org/10.
1023/A:1027328830731

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using NetworkX. Los Alamos National Laboratory (LANL), Los Alamos, NM
(United States).

Andreuzzi, F., (2021). BisPy: Bisimulation in Python. Journal of Open Source Software, 6(65), 3519. https://doi.org/10.21105/joss.03519 4

https://worldcat.org/isbn/978-0-262-03384-8
https://doi.org/10.1007/3-540-44585-4_8
https://doi.org/10.1007/3-540-44585-4_8
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.21105/joss.03519

Hopcroft, J. (1971). An n log n algorithm for minimizing states in a finite automaton. In
Theory of machines and computations (pp. 189–196). Elsevier. https://doi.org/10.1016/
B978-0-12-417750-5.50022-1

Kanellakis, P. C., & Smolka, S. A. (1990). CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1), 43–68. https://doi.org/
10.1016/0890-5401(90)90025-D

Paige, R., & Tarjan, R. E. (1987). Three partition refinement algorithms. SIAM Journal on
Computing, 16(6), 973–989. https://doi.org/10.1137/0216062

Saha, D. (2007). An incremental bisimulation algorithm. International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, 204–215. https:
//doi.org/10.1007/978-3-540-77050-3_17

Sharir, M. (1981). A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications, 7(1), 67–72. https://doi.org/10.1016/
0898-1221(81)90008-0

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1(2), 146–160. https://doi.org/10.1137/0201010

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
ISBN: 1441412697

Andreuzzi, F., (2021). BisPy: Bisimulation in Python. Journal of Open Source Software, 6(65), 3519. https://doi.org/10.21105/joss.03519 5

https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1137/0216062
https://doi.org/10.1007/978-3-540-77050-3_17
https://doi.org/10.1007/978-3-540-77050-3_17
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1137/0201010
https://worldcat.org/isbn/1441412697
https://doi.org/10.21105/joss.03519

	Summary
	Statement of need
	
	Example
	Performance
	Acknowledgements
	References

