
lhorizon: geometry and targeting via JPL Horizons
Michael St. Clair1 and Matthew Siegler2

1 Chief Technical Officer, Million Concepts 2 Research Scientist, Planetary Science Institute
DOI: 10.21105/joss.03495

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @malmans2
• @steo85it

Submitted: 06 July 2021
Published: 13 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

lhorizon helps you locate natural and artificial bodies and features in the Solar System.
It is built around a thick Python wrapper for the Jet Propulsion Laboratory (JPL) Solar
System Dynamics Group Horizons service (Jon D. Giorgini, 2015). Horizons is one of the only
providers of ready-to-go, no-assembly-required geometry data for almost every object in the
Solar System. Other interfaces to Horizons exist (see ‘Other Related Work’ below for several
examples), but lhorizon is particularly optimized for stability and time-to-value for large
queries and for processing results with reference to arbitrary topocentric coordinate systems.
lhorizon offers a flexible, idiomatic, highly performant pseudo-API to Horizons that returns
data as standard scientific Python objects (NumPy, Harris et al. (2020) ndarrays and
pandas DataFrames, The pandas development team (2020)). It provides special handling
functions for bulk, chunked, and body-listing queries; it also includes an ancillary module,
lhorizon.targeter, for finding the footprint of an observer’s boresight or field of view in
topocentric coordinates on target bodies.
We wrote lhorizon in support of a research effort to use Earth-based radio telescopes,
including Arecibo and the Very Large Array (VLA), to perform heat flow mapping of the
Moon. We needed to coregister these data with existing models, so we were specifically
interested in answering questions like: “in lunar latitude and longitude, where is Arecibo
pointing?” As Earth-based radio telescopes are not primarily designed to answer questions
about nearby bodies, their processing pipelines aren’t readily suited for goals like producing
lunar maps. Using these instruments in unusual ways also resulted in additional measurement
uncertainties (e.g., geometric uncertainty) that we wanted to minimize. Horizons was an
appealing data source due to its high precision (up to microarcseconds for Moon positions
relative to Earth in the relevant time frame, well above the limits of precision introduced by our
other constraints) and its ability to deliver tables of positions relative to arbitrary topocentric
points, natively referenced to the geodetic datums of their host bodies (e.g., WGS84 for
Earth), with robust corrections for light-time, gravitational delays, and aberration.
However, with millions of data points widely dispersed across times and observing locations,
we needed a highly performant programmatic interface to achieve our task. We were pleased
to discover that the astroquery (Ginsburg et al., 2019) project included a module for querying
Horizons called jplhorizons. This module, written primarily by Michael Mommert around
2016, is tightly integrated with astroquery. It uses astroquery’s session handlers and parsing
system, and returns results in astropy tables. Unfortunately, we discovered that due to changes
in the behavior of the Horizons CGI endpoint, parts of jplhorizons that probably worked
very well in 2016 no longer worked in 2019. We implemented workarounds, but discovered that
the performance of jplhorizons was inadequate for our use case. astroquery’s parsers and
astropy tables are powerful, but this power comes at a performance cost. The cost is irrelevant
for many applications but quite relevant for use cases with tens to hundreds of thousands of
data points per analysis. We wrote an entirely new response parser using only builtins, NumPy,
and pandas, resulting in performance improvements of a factor of 10-100x. (Since then, there
have been significant backend improvements in astropy tables, and lhorizon typically offers

Clair et al., (2021). lhorizon: geometry and targeting via JPL Horizons. Journal of Open Source Software, 6(65), 3495. https://doi.org/10.
21105/joss.03495

1

https://doi.org/10.21105/joss.03495
https://github.com/openjournals/joss-reviews/issues/3495
https://github.com/MillionConcepts/lhorizon
https://doi.org/10.5281/zenodo.5504214
http://arfon.org/
https://github.com/malmans2
https://github.com/steo85it
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03495
https://doi.org/10.21105/joss.03495


only about 10x speed and 50% memory reduction over the latest version of jplhorizons.
Benchmark notebooks are available in our GitHub repository.)
We submitted minimal workarounds for the API issues to astroquery, but the changes we
made in our fork were too extensive to be folded into astroquery via a PR – especially because
removing astropy objects and idioms was one of our major design goals. We named this fork
lhorizon and have continued developing it as a distinct project.

Statement of Need

JPL’s geometry products are essential elements of academic and industrial projects related
to planetary science, astronomy, geosciences, and many other fields. They are useful for any
application involving artificial satellites (from data analysis to mission design) or the position
of Solar System bodies (even “simple” quantities like solar angles at arbitrary Earth locations).
They are thus invaluable public resources. Unfortunately, they are not always easy to use.
JPL offers two automated interfaces to its geometry products: the SPICE toolkit (NASA
NAIF, 2021), developed by NAIF, NASA’s Navigation and Ancillary Information Facility, and
Horizons. SPICE is very powerful but presents a high barrier to entry. Using SPICE requires
not only acquiring and configuring software, but also collecting the appropriate data files,
called “kernels.” There is no central repository for kernels – NAIF’s website comes closest, but
crucial kernels are scattered across hundreds of other Planetary Data System (PDS) archives.
Loading a consistent kernel pool is challenging and requires scripting in a domain-specific
markup language. Learning the SPICE toolkit can be challenging for both specialists and for
general users who need quick access to geometry data. SPICE implementations exist in several
languages, and excellent wrappers exist (notably the idiomatic Python wrapper SpiceyPy
(Annex et al., 2020)), but they do not solve the conceptual and data access difficulties of
SPICE.
Horizons is, by comparison, user-friendly. While it does not implement all of the utilities of
the SPICE toolkit, it offers flexibility SPICE does not and contains state information for many
sites and bodies for which no SPICE kernels exist. Horizons offers several interface methods:
interactive web, telnet, email, and web CGI. Because bulk queries to the CGI endpoint are
not easy to compose and parsing its responses is not straightforward, simply building URLs
for this interface and
parsing the returned text significantly improves access to Solar System geometry data – lho
rizon does that and more. Some likely use cases include calculating solar angles on Mars,
determining the precise distance from the Solar System barycenter to an artificial satellite,
and finding selenodetic coordinates for pixels within the field of view of a terrestrial telescope
pointed at the Moon. We include Jupyter Notebooks in our repository that illustrate these
uses.
An official REST API to Horizons is forthcoming but not yet available, and the details of its
capabilities have not been publicly released (J. D. Giorgini, 2020). It is likely that high-level
wrappers for this API will be useful, and we plan to update lhorizon to fill this role.

Other Related Work

Many wrappers, helpers, and interfaces for Horizons have been developed, though most are
incomplete, defunct, or encapsulated in other applications. They include:

• py-NASA-horizons, a vectors query wrapper; abandoned since 2013 and no longer func-
tional (tpltnt (pseudonymous), 2013).

Clair et al., (2021). lhorizon: geometry and targeting via JPL Horizons. Journal of Open Source Software, 6(65), 3495. https://doi.org/10.
21105/joss.03495

2

https://doi.org/10.21105/joss.03495
https://doi.org/10.21105/joss.03495


• Mihok’s HORIZON-JPL, a REST API; abandoned since 2014 and no longer functional
(Mihok, 2014).

• Fejes’ JS-HORIZONS, a JavaScript library focused on physical rather than geometry
data (Fejes, 2020).

More broadly, libraries like astropy.coordinates (A. M. Price-Whelan et al., 2018) and
Skyfield (Rhodes, 2019) that perform calculations based on JPL ephemerides are similar in
application to lhorizon and should be considered by potential users.
This application space also includes lower-level ephemeris toolkits other than SPICE that may
be preferable for some applications. For instance, the CALCEPH (M. Gastineau, 2021) library,
developed by the IMCCE of the Observatoire de Paris, offers interfaces to many programming
languages and is compatible with a wider variety of ephemeris formats than SPICE.

Acknowledgements

This work was supported by a NASA Solar System Workings grant, #NNX16AQ10G, and a
NASA Solar System Observations grant, #NNX17AF12G.

References

A. M. Price-Whelan, and, Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil,
S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., VanderPlas, J. T., Bradley,
L. D., Pérez-Suárez, D., Val-Borro, M. de, Aldcroft, T. L., Cruz, K. L., Robitaille, T. P.,
Tollerud, E. J., Ardelean, C., … and, and. (2018). The astropy project: Building an open-
science project and status of the v2.0 core package. The Astronomical Journal, 156(3),
123. https://doi.org/10.3847/1538-3881/aabc4f

Annex, A., Pearson, B., Seignovert, B., Carcich, B., Eichhorn, H., Mapel, J., Forstner, J. von,
McAuliffe, J., Rio, J. del, Berry, K., Aye, K.-M., Stefko, M., Val-Borro, M. de, Kulumani,
S., & Murakami, S. (2020). SpiceyPy: A pythonic wrapper for the SPICE toolkit. Journal
of Open Source Software, 5(46), 2050. https://doi.org/10.21105/joss.02050

Fejes, Z. (2020). JS-HORIZONS. GitHub. https://github.com/zachfejes/js-horizons
Ginsburg, A., Sipőcz, B. M., Brasseur, C. E., Cowperthwaite, P. S., Craig, M. W., Deil, C.,

Guillochon, J., Guzman, G., Liedtke, S., Lim, P. L., Lockhart, K. E., Mommert, M., Morris,
B. M., Norman, H., Parikh, M., Persson, M. V., Robitaille, T. P., Segovia, J.-C., Singer,
L. P., … and, J. W. (2019). Astroquery: An astronomical web-querying package in python.
The Astronomical Journal, 157(3), 98. https://doi.org/10.3847/1538-3881/aafc33

Giorgini, Jon D. (2015). Status of the JPL Horizons Ephemeris System. IAU General Assem-
bly, 29, 2256293.

Giorgini, J. D. (2020). JPL horizons overview and future plans. https://lsst-sssc.github.io/
Sprint2020/talks/Day-2_Giorgini_Horizons_LSST20200617.pdf

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

M. Gastineau, A. F., J. Laskar. (2021). CALCEPH (Version 3.5.0) [Computer software].
Institut de mécanique céleste et de calcul des éphémérides. https://www.imcce.fr/inpop/
calceph/

Clair et al., (2021). lhorizon: geometry and targeting via JPL Horizons. Journal of Open Source Software, 6(65), 3495. https://doi.org/10.
21105/joss.03495

3

https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.21105/joss.02050
https://github.com/zachfejes/js-horizons
https://doi.org/10.3847/1538-3881/aafc33
https://lsst-sssc.github.io/Sprint2020/talks/Day-2_Giorgini_Horizons_LSST20200617.pdf
https://lsst-sssc.github.io/Sprint2020/talks/Day-2_Giorgini_Horizons_LSST20200617.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.imcce.fr/inpop/calceph/
https://www.imcce.fr/inpop/calceph/
https://doi.org/10.21105/joss.03495
https://doi.org/10.21105/joss.03495


Mihok, M. (2014). Horizon-jpl. GitHub. https://github.com/mihok/horizon-jpl
NASA NAIF. (2021). NAIF spice data. https://naif.jpl.nasa.gov/naif/data.html
Rhodes, B. (2019). Skyfield: High precision research-grade positions for planets and earth

satellites generator. Astrophysics Source Code Library. https://ui.adsabs.harvard.edu/
abs/2019ascl.soft07024R/abstract

The pandas development team. (2020). Pandas-dev/pandas: pandas (latest) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.3509134

tpltnt (pseudonymous). (2013). Py-NASA-horizons. GitHub. https://github.com/tpltnt/
py-NASA-horizons

Clair et al., (2021). lhorizon: geometry and targeting via JPL Horizons. Journal of Open Source Software, 6(65), 3495. https://doi.org/10.
21105/joss.03495

4

https://github.com/mihok/horizon-jpl
https://naif.jpl.nasa.gov/naif/data.html
https://ui.adsabs.harvard.edu/abs/2019ascl.soft07024R/abstract
https://ui.adsabs.harvard.edu/abs/2019ascl.soft07024R/abstract
https://doi.org/10.5281/zenodo.3509134
https://github.com/tpltnt/py-NASA-horizons
https://github.com/tpltnt/py-NASA-horizons
https://doi.org/10.21105/joss.03495
https://doi.org/10.21105/joss.03495

	Summary
	Statement of Need
	Other Related Work
	Acknowledgements
	References

