
SurPyval: Survival Analysis with Python
Derryn Knife1

1 Independent researcher
DOI: 10.21105/joss.03484

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey
Reviewers:

• @CamDavidsonPilon
• @MatthewReid854

Submitted: 13 June 2021
Published: 11 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Survival analysis is being increasingly used by scientists, data scientists, engineers, econome-
tricians, and many other professionals to solve their problems. Survival analysis is a unique
set of tools that are used to estimate either the time to an event or the chance of an event
happening. That is, survival analysis allows you to estimate how long something is likely to
last or what risk there is of some event happening in the future. This is vital for fields such
as the medical sciences where we need to know how long someone with a particular diagnosis
might live or if a treatment or intervention is successful at prolonging life. In engineering it
is useful to understand the risk that fielded equipment might fail. For an insurance company
it is necessary to help price policies and in economics it is useful for estimating the durations
of recessions or the time to the next recession. Survival analysis in these examples encounter
interesting kinds of data, for example, engineers conducting life testing may have components
that do not fail during the observation period, or that might fail between two inspections. In
this case the data is said to be censored. In medical trials you might have subjects enter a
trial later than other subjects while insurance claims are only lodged above the excess value
on the policy. In these cases the data is said to be truncated. These considerations are unique
to survival analysis and are critical to handle correctly to make appropriate predictions or find
significant differences.
SurPyval is a pure-Python package, making installation and maintenance simple. Furthermore,
SurPyval is a flexible and robust survival analysis package that can take as input an arbitrary
combination of observed, censored, and truncated data over a wide number of distributions and
their variations. For this reason SurPyval is likely to be of interest to a wide field of analysts
in broad industries including finance, insurance, engineering, medical science, agricultural
science, economics, and many others.

Statement of need

Some basic survival analysis techniques are available in SciPy (Virtanen et al., 2020), and
other more complete Python packages for survival analysis, including lifelines (Davidson-Pilon,
2019) and reliability (Reid, 2021), offer excellent methods for many applications. SurPyval
fills a gap in the Python ecosystem by focusing on the flexibility to accommodate any arbitrary
combination of observed failures (or deaths); left, right, or interval censored; and left or right
truncated data with a single format. Another powerful feature of SurPyval is that it lets
users select an estimation method for their circumstances. Maximum Likelihood Estimation
(MLE) is used in most other applications, but SurPyval also implements Maximum Product
of Spacing, Method of Moments, Probability Plotting, Mean Square Error, and Expectation-
Maximisation. This variety of estimation methods gives users of SurPyval greater flexibility
in their choice of which parameter estimation technique to use when fitting distributions to
their data. Commercial packages are well developed but can be expensive. R is excellent
for survival analysis but many analysts now use Python as is explained in the lifelines paper.

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

1

https://doi.org/10.21105/joss.03484
https://github.com/openjournals/joss-reviews/issues/3484
https://github.com/derrynknife/SurPyval
https://doi.org/10.5281/zenodo.5177222
https://dfm.io
https://github.com/CamDavidsonPilon
https://github.com/MatthewReid854
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

Therefore there is a need to have another flexible and open source python package to do
survival analysis.

Features

SurPyval is grouped into two modules, these are parametric and non-parametric modules.
For the parametric module SurPyval offers several methods to estimate parameters; these are
Maximum Likelihood Estimation (MLE), Mean Square Error (MSE), Method of Probability
Plotting (MPP), Maximum Product of Spacing (MPS), Method of Moments (MOM), and
Expectation-Maximisation (EM). The EM is only used for mixture models.
For the Non-Parametric estimation SurPyval can estimate the survival distribution using ei-
ther the Kaplan-Meier (Kaplan & Meier, 1958), Nelson-Aalen (Nelson, 1969); (Aalen, 1978),
Fleming-Harrington (Fleming & Harrington, 1984), or the Turnbull (Turnbull, 1976) estima-
tors. Support for data types and estimation methods can be seen in the table below.

Method Para/Non-Para Observed Censored Truncated
MLE Parametric Yes Yes Yes
MPP Parametric Yes Yes Limited
MSE Parametric Yes Yes Limited
MOM Parametric Yes No No
MPS Parametric Yes Yes No
Kaplan-Meier Non-Parametric Yes Right only Left only
Nelson-Aalen Non-Parametric Yes Right only Left only
Fleming-Harrington Non-Parametric Yes Right only Left only
Turnbull Non-Parametric Yes Yes Yes

SurPyval achieves this flexibility with a simple API. SurPyval uses a data input API, the ‘xcnt’
format, that can be used to define any arbitrary combination of censored or truncated data.
‘x’ is the value at the observation, ‘c’ is the censoring flag, ‘n’ is the counts, and ‘t’ is the
truncation values. SurPyval uses the convention for the censor flag where -1 is left censored,
0 is an observed value, 1 is right censored, and 2 is intervally censored. Utilities have also
been created to help users transform their data into the ‘xcnt’ format if they have it in another
format. A lot of survival data is provided in an observed and suspended format, this is where
you have a list of the failure times and a list of the suspended times: for example, failures
of [1, 2, 3, 4, 5] and suspended times of [1, 2, 3]. SurPyval refers to this format as the ‘fs’
format.
For Non-Parametric analysis SurPyval takes as input the ‘xcnt’ format, but the KM, NA,
and FH estimators are calculated using the ‘xrd’ format. This format takes ‘x’ as the value
of the observation, ‘r’ as the count of items at risk at each ‘x,’ and ‘d’ is the number of
deaths/failures at each time ‘x.’ Once data is in this format it is possible to compute the KM,
NA, or FH estimators. For the Turnbull estimator the values of ‘x,’ ‘r,’ and ‘d’ are computed
using Turnbull’s algorithm; ‘x,’ ‘r,’ and ‘d’ estimates account for truncation and censoring.
These values can then be used with the KM, NA, or FH estimator to get an estimate of the
distribution.
Maximum Likelihood Estimation can be used for any arbitrary combination of censoring and
truncation. The Probability Plotting and Mean Square Error methods can be used with
arbitrarily censored data and limited truncation. Specifically, these methods are limited if the
maximum and minimum of the observed data are truncated observations. This is because the
Turnbull Non-Parametric Maximum Likelihood Estimator (NPMLE) cannot assume the shape
of the distribution and therefore cannot be used to estimate by how much the highest and

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

2

https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

lowest values are truncated. The Maximum Product of Spacing estimation can be used with
censored observations. The Method of Moment estimation can only be used with observed
data, i.e. no censoring or truncation.
SurPyval uses SciPy for numerical optimisation but also aims to imitate as close as possible
the API for parameter estimation, specifically, the use of the fit() method. The main
difference between SciPy and SurPyval is that SurPyval returns an object. The intent of this
is to capture the distribution in an object for subsequent use. This could be used in Monte
Carlo simulations using the random() method or it could be used in applications like reliability
for interval optimisations.
Unlike other survival analysis packages SurPyval allows users fix any parameter with any
distribution. This is similar to SciPy which allows the location, shape, and scale parameters
to be fixed. In SurPyval this is done using the fixed keyword with a dictionary of the name
and value of the fixed parameter and value.

Optimisations

SurPyval, inspired by lifelines, uses autograd (Maclaurin et al., 2015) autodifferentiation to
calculate the jacobians and hessians needed for optimisations in parametric analysis. Addi-
tionally, SurPyval uses lessons from deep learning to improve the stability of estimation. Con-
cretely, SurPyval uses a modified ELU function (Clevert et al., 2015) to transform bounded
parameters to be unbounded. For example, the alpha parameter for a Weibull distribution is
supported on the half-real line, (0, Inf). Using the modified ELU function the input to the
optimizer is transformed to be supported over the full real line (-Inf, Inf) but then will trans-
form this value to a positive number when calculating the objective function. This reduces
the risk of optimisations failing because the numeric gradient might ‘overshoot’ and hit a
bound therefore produce undefined results which in turn causes the autodifferentiation to fail.
The ELU is also useful for autodifferentiation because it is continuously differentiable which
eliminates discrete jumps in the gradient. Another advantage of this improvement is that it
can be used to robustly estimate offsets (for example the ‘gamma’ parameter) for half real-line
supported distributions. For example, SurPyval can be used to estimate the parameters of
the four parameter Exponentiated-Weibull distribution, which is a feature that is absent from
other currently available survival packages.
Another optimisation used by SurPyval is the use of good initial approximations for parameter
initialisation. Probability plotting methods do not require initial estimates of the parameters;
which is in contrast to estimates using optimizers. Further, optimisation results are very sen-
sitive to the initial estimates, if the initial estimate is too far from the actual result it can yield
incredulous results. As such SurPyval uses either probability plotting estimates or estimates
using transformed data with another distribution to do the initial estimate. Combining the
use of autogradients, bound transformations, and close initial approximations, SurPyval is a
stable software for estimating parameters for statistical distributions.

Examples

Some examples of the API and how flexible it can be. Firstly, a simple estimate from random
data:

from surpyval import Weibull
import numpy as np

np.random.seed(10)

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

3

https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

Weibull parameters
alpha = 10
beta = 2

Random samples
N = 30

x = Weibull.random(N, alpha, beta)

model = Weibull.fit(x)
print(model)

Parametric Surpyval model with Weibull distribution fitted by MLE yielding
parameters [9.71565772 2.33944554]

Using offsets with SurPyval is a simple change by setting the offset parameter to True. Using
data from Weibull’s paper (Weibull & others, 1951) which introduced the wide applicability
of the distribution to survival analysis, we can get a three parameter Weibull distribution:

from surpyval import Weibull
from surpyval.datasets import BoforsSteel

data = BoforsSteel.df

x = data['x']
n = data['n']

model = Weibull.fit(x=x, n=n, offset=True)
model.plot()
print(model)

Offset Parametric Surpyval model with Weibull distribution fitted by MLE yielding
parameters [7.14192522 2.6204524] with offset of 39.76562962867473

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

4

https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

Figure 1: Weibull Data and Distribution

There are more examples of the flexible API in the main documentation.

References

Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of
Statistics, 701–726. https://doi.org/10.1214/aos/1176344247

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (elus). arXiv Preprint arXiv:1511.07289.

Davidson-Pilon, C. (2019). Lifelines: Survival analysis in Python. Journal of Open Source
Software, 4(40), 1317. https://doi.org/10.21105/joss.01317

Fleming, T. R., & Harrington, D. P. (1984). Nonparametric estimation of the survival dis-
tribution in censored data. Communications in Statistics-Theory and Methods, 13(20),
2469–2486. https://doi.org/10.1080/03610928408828837

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.
2307/2281868

Maclaurin, D., Duvenaud, D., & Adams, R. P. (2015). Autograd: Effortless gradients in
Numpy. ICML 2015 AutoML Workshop, 238, 5.

Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technol-
ogy, 1(1), 27–52. https://doi.org/10.1080/00224065.1969.11980344

Reid, M. (2021). MatthewReid854/reliability: v0.5.7 (Version v0.5.7) [Computer software].
Zenodo. https://doi.org/10.5281/zenodo.5030847

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored
and truncated data. Journal of the Royal Statistical Society: Series B (Methodological),
38(3), 290–295. https://doi.org/10.1111/j.2517-6161.1976.tb01597.x

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

5

https://surpyval.readthedocs.io/en/latest/
https://doi.org/10.1214/aos/1176344247
https://doi.org/10.21105/joss.01317
https://doi.org/10.1080/03610928408828837
https://doi.org/10.2307/2281868
https://doi.org/10.2307/2281868
https://doi.org/10.1080/00224065.1969.11980344
https://doi.org/10.5281/zenodo.5030847
https://doi.org/10.1111/j.2517-6161.1976.tb01597.x
https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Weibull, W., & others. (1951). A statistical distribution function of wide applicability. Journal
of Applied Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337

Knife, D., (2021). SurPyval: Survival Analysis with Python. Journal of Open Source Software, 6(64), 3484. https://doi.org/10.21105/joss.
03484

6

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1115/1.4010337
https://doi.org/10.21105/joss.03484
https://doi.org/10.21105/joss.03484

	Summary
	Statement of need
	Features
	Optimisations
	Examples
	References

