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Summary

Developed in the Virtual Reality Laboratory at the Munroe Meyer Institute, the Biosensor
Framework library provides an interface for interacting with biosensors and performing affective
computing tasks on their output data streams. Currently, it natively supports the Empatica
E4 biosensor and communicates through a TCP connection with their provided server.
This library provides the following capabilities: - Connection to the TCP client that Empatica
provides for connecting their devices to a user’s PC - Parsing and packing of commands to
communicate bidirectionally with the TCP client - Collection and delivery of biometric readings
to an end user’s software application - Extraction of literature supported feature vectors to al-
low characterization of the biological signal features - Microsoft.ML support for inferencing on
the feature vectors natively in C# in both multi-class and binary classification tasks - Support
for simulating a data stream for debugging and testing applications without an Empatica E4
device - Support for parsing open source Empatica E4 datasets and training machine learning
models on them (i.e., WESAD (Schmidt et al., 2018)) - Support for interfacing new sensors
into the same pipeline - Contains models trained on WESAD dataset in the Microsoft.ML
framework.

Background

Biosensor Framework is a C# library that handles the full process of gathering biometric data
from a body-worn sensor, transforming it into handcrafted feature vectors, and delivering
an inferencing result in thirty-five lines of code. Purpose built to handle the Empatica E4
biosensor, the Empatica provided TCP client is wrapped in a static C# class to provide
convenient function calls and error handling to simplify code structure. With the introduction
of Microsoft.ML, the entire pipeline is handled in C# managed code and is fully compatible
with the Unity game engine, allowing for affective computing to be easily introduced into
existing virtual reality therapy tools. The decoupled structure of the library also allows for
new biosensors to be introduced into the pipeline, requiring only a single code file to be added
to retrieve data in a list of doubles.
Generally, affective computing is concerned with the physiological changes of the subject and
how that relates to their internal state. Most implementations of affective computing look at
electrodermal activity (EDA), like a lie detector test, to measure the onset of stress before
the subject may even be aware of it (Gjoreski et al., 2016; Healey, 2000; Healey & Picard,
2005; Kutt et al., 2018). There is a growing body of literature that incorporates the use of
multiple body sensors, primarily worn on the wrist, such as photoplethysmography (PPG),
three axis acceleration (ACC), and skin temperature (TMP) (Choi et al., 2011; Gent et al.,
2019; Gjoreski et al., 2016; Kaczor et al., 2020; Kleiman et al., 2019; Kutt et al., 2018; Zhou
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et al., 2017). As these sensors are miniaturized, they can be easily incorporated into wrist-
worn packages and can be fused with other sensor modalities, such as respiratory sensors, eye
trackers, or body trackers, to estimate a subject’s emotional state more accurately.
Biosensor Framework incorporates the algorithms used in the WESAD dataset for computing
feature vectors for all sensors on the Empatica E4: EDA, PPG, ACC, and TMP (Schmidt et
al., 2018). Additionally, the E4 provides estimations on the heart rate and inter-beat interval,
as well as a button for manually tagging the data stream, which has been implemented in a
function to mark relevant events. To detrend the EDA signal, a time-varying, finite-impulse-
response, high-pass filter is used (Tarvainen et al., 2002). For detecting major responses in
the EDA, the method proposed by Healey is used (Healey, 2000). To perform the Fast Fourier
Transform, the DSPLib project was incorporated to allow real-time computation of the signal
spectra. Finally, a stillness metric was added to compute a unitless measure of movement
from the accelerometer signals (Chang et al., 2012).

Statement of need

In the application of virtual reality therapy tools for patients with autism spectrum disorder,
the continual management of stress is of utmost importance (Bishop-Fitzpatrick et al., 2015;
Kildahl et al., 2019). These tools can introduce stressful situations such as navigating an
airport, handling an airplane ride, or crossing a busy intersection, which can be difficult or
impossible to simulate in a controlled clinical environment (Miller et al., 2020; Poyade et
al., 2017; Saiano et al., 2015). This stress can be monitored using biosensors and literature
supported machine learning models, which gives the clinician an additional layer of information
for tuning the environment for its intended therapeutic effect. Additionally, the library can
be used in applications for monitoring and managing ambulatory stress for at-risk patients,
allowing another layer of information for medical personnel to assess the state of their patients
(Kleiman et al., 2019).
The most common tool to implement virtual reality therapy tools is the Unity game engine,
which runs a C# interpreter based on the Mono compiler. To reasonably use common open-
source machine learning tools, such as Python, MATLAB, or R, would require the use of
additional TCP servers to act as the intermediary between the virtual environment and the
biosensor readings. This adds an additional layer to the technology stack and, for Unity
developers, requires the compilation and management of multiple projects. The Biosensor
Framework library removes this additional layer and simplifies the machine learning down to
simple function calls.

Affect Classification Model Performance

We split the WESAD dataset into the binary classification and multi-class organization as
specified in (Schmidt et al., 2018) and calculated the feature vectors accordingly. We used a
train-test split of 0.3 and trained using the standard Fit method built into the Microsoft.ML
models. The binary classification task was split into stress vs. non-stress and the multi-class
classification task was split into baseline vs. stress vs. amusement. The regression tasks also
used the latter dataset. The metrics were calculated from the test fit and were automatically
generated by Microsoft.ML.
Regression Model Metrics

Fast Forest Fast Tree Fast Tree Tweedie LBFGS
Loss Function 19.54 11.34 12.27 37.11
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Fast Forest Fast Tree Fast Tree Tweedie LBFGS
Mean Absolute Error 28.33 16.64 16.63 45.89
Mean Squared Error 19.54 11.14 12.27 37.11
RMS Error 44.20 33.67 35.03 60.92
R Squared 65.17 79.79 78.12 26.11

Multi-Class Classification Metrics

Fast Forest Fast Tree LBFGS Regression LBFGS Max Entropy
Log Loss 31.30 22.27 45.11 41.51
LL Reduction 68.51 77.59 51.82 55.67
Macro Acc 84.59 93.78 68.80 71.97
Micro Acc 89.06 95.40 84.76 85.40
Class 0 Precision 93.72 95.90 83.09 84.69
Class 0 Recall 93.36 97.82 95.85 94.54
Class 0 Loss 22.03 9.92 23.13 23.59
Class 1 Precision 83.98 98.34 91.46 90.56
Class 1 Recall 92.97 94.73 91.09 91.30
Class 1 Loss 25.96 27.68 42.37 34.16
Class 2 Precision 83.21 88.53 63.64 85.40
Class 2 Recall 67.26 88.79 19.44 30.09
Class 2 Loss 71.23 52.41 152.03 140.35

Binary Classification Metrics

Fast Forest Fast Tree
Accuracy 92.35 96.85
AUPRC 97.95 99.05
AURC 97.39 98.88
F1 Score 92.86 97.06
Negative Precision 92.34 97.07
Negative Recall 91.19 96.17
Positive Precision 92.36 96.67
Positive Recall 93.37 97.46

For our evaluation of the machine learning framework, we focused on the binary classification
task of stress v. non-stress. Microsoft.ML has built in models that allow for quick training,
evaluation, and deployment of machine learning applications. The ones that we evaluated
were the Fast Forest and Fast Tree models. The models evaluated performed very well in
the binary classification task and the Fast Tree outperformed the Fast Forest. For all three
classification tasks the Fast Tree outperformed all other models.
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