
torchquad: Numerical Integration in Arbitrary
Dimensions with PyTorch
Pablo Gómez∗1, Håvard Hem Toftevaag1, and Gabriele Meoni1

1 Advanced Concepts Team, European Space Agency, Noordwijk, The Netherlands
DOI: 10.21105/joss.03439

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @felipefr
• @scarlehoff

Submitted: 15 June 2021
Published: 31 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

torchquad is a Python module for n-dimensional numerical integration optimized for graph-
ics processing units (GPUs). Various deterministic and stochastic integration methods, such
as Newton–Cotes formulas and Monte Carlo integration methods like VEGAS Enhanced
(Lepage, 2020), are available for computationally efficient integration for arbitrary dimension-
ality nd. As it is implemented using PyTorch (Paszke et al., 2019), one of the most popular
machine learning frameworks, torchquad provides fully automatic differentiation throughout
the integration, which is essential for many machine learning applications.

Statement of Need

Multidimensional integration is needed in many fields, such as physics (ranging from parti-
cle physics (Kersevan & Richter-Was, 2013) to astrophysics (Izzo & Gómez, 2021)), applied
finance (Campolieti & Makarov, 2007), medical statistics (Ray et al., 2011), and machine
learning (Atay & Hutt, 2006). Most of the conventional Python packages for multidimen-
sional integration, such as quadpy (Schlömer et al., 2021) and nquad (Virtanen et al., 2020),
only target and are optimized for central processing units (CPUs). However, as many numer-
ical integration methods are embarrassingly parallel, GPUs can offer superior computational
performance in their computation. Furthermore, numerical integration methods typically suf-
fer from the so-called curse of dimensionality (Wu et al., 2020). This phenomenon refers to
the fact that the computational complexity of the integration grows exponentially with the
number of dimensions (Bellman, 2003). Reducing the error of the integration value requires
increasing the number of function evaluation points N exponentially, which significantly in-
creases the runtime of the computation, especially for higher dimensions. Previous work has
demonstrated that this problem can be mitigated by leveraging the single instruction, multiple
data parallelization of GPUs (Wu et al., 2020).
Although GPU-based implementations for multidimensional numerical integration in Python
exist, some of these packages do not allow fully automatic differentiation (Borowka et al.,
2019), which is crucial for many machine learning applications (Baydin et al., 2018). Re-
cently, to fill this gap, the packages VegasFlow (Carrazza & Cruz-Martinez, 2020) and
ZMCintegral (Wu et al., 2020) were developed. Both of these implementations are, how-
ever, based on TensorFlow (Abadi et al., 2016), and there are currently no packages available
that enable more than one-dimensional integration in PyTorch. Additionally, the available
GPU-based Python packages that allow fully automatic differentiation rely solely on Monte
Carlo methods (Carrazza & Cruz-Martinez, 2020; Wu et al., 2020). Even though such
methods offer good speed–accuracy trade-offs for problems of high dimensionality nd, the

∗corresponding author

Gómez et al., (2021). torchquad: Numerical Integration in Arbitrary Dimensions with PyTorch. Journal of Open Source Software, 6(64), 3439.
https://doi.org/10.21105/joss.03439

1

https://doi.org/10.21105/joss.03439
https://github.com/openjournals/joss-reviews/issues/3439
https://github.com/esa/torchquad/
https://doi.org/10.5281/zenodo.5344938
https://avesis.istanbul.edu.tr/mhsatman
https://github.com/felipefr
https://github.com/scarlehoff
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03439


efficiency of deterministic methods, such as the Newton–Cotes formulas, is often superior for
lower dimensionality (Lepage, 1978).
In summary, to the authors’ knowledge, torchquad is the first PyTorch-based module for
n-dimensional numerical integration. Furthermore, it incorporates several deterministic and
stochastic methods, including Newton–Cotes formulas and VEGAS Enhanced, which allow ob-
taining high-accuracy estimates for varying dimensionality at configurable computational cost
as controlled by the maximum number of function evaluations N . It is, to the authors’ knowl-
edge, also the first GPU-capable implementation of VEGAS Enhanced (Lepage, 2020), which
improves on its predecessor VEGAS by introducing an adaptive stratified sampling strategy.
Finally, being PyTorch-based, torchquad is fully differentiable, extending its applicability to
use cases such as those in machine learning. In these applications, it is typically necessary to
compute the gradient of some parameters with regard to input variables to perform updates of
the trainable parameters in the machine learning model. With torchquad, e.g., the employed
loss function can contain integrals without breaking the automatic differentiation required for
training.

Implemented Integration Methods

torchquad features fully vectorized implementations of various deterministic and stochas-
tic methods to perform n-dimensional integration over cubical domains. In particular, the
following deterministic integration methods are available in torchquad (version 0.2.1):

• Trapezoid Rule (Sag & Szekeres, 1964)
• Simpson's Rule (Sag & Szekeres, 1964)
• Boole's Rule (Ubale, 2012)

The stochastic integration methods implemented in torchquad so far are:

• Classic Monte Carlo Integrator (Caflisch, 1998)
• VEGAS Enhanced (VEGAS+) integration method (Lepage, 2020)

The functionality and the convergence of all the methods are ensured through automatic unit
testing, which relies on an extensible set of different test functions. Both single and double
precision are supported to allow different trade-offs between accuracy and memory utilization.
Even though it is optimized for GPUs, torchquad can also be employed without a GPU
without any functional limitations.

Installation & Contribution

The torchquad package is implemented in Python 3.8 and is openly available under a GPL-
3 license. Installation with either pip (PyPi)1 or conda2 is available. Our public GitHub
repository3 provides users with direct access to the main development branch. Users wishing
to contribute to torchquad can submit issues or pull requests to our GitHub repository
following the contribution guidelines outlined there.

1torchquad package on PyPi, https://pypi.org/project/torchquad/
2torchquad package on conda, https://anaconda.org/conda-forge/torchquad
3torchquad GitHub repository, https://github.com/esa/torchquad

Gómez et al., (2021). torchquad: Numerical Integration in Arbitrary Dimensions with PyTorch. Journal of Open Source Software, 6(64), 3439.
https://doi.org/10.21105/joss.03439

2

https://pypi.org/project/torchquad/
https://anaconda.org/conda-forge/torchquad
https://github.com/esa/torchquad
https://doi.org/10.21105/joss.03439


Tutorials

The torchquad documentation, hosted on Read the Docs,4 provides some examples of the
use of torchquad for one-dimensional and multidimensional integration utilizing a variety of
the implemented methods.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A
System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, 265–283. ISBN: 9781931971331

Atay, F. M., & Hutt, A. (2006). Neural Fields with Distributed Transmission Speeds and Long-
Range Feedback Delays. SIAM Journal on Applied Dynamical Systems, 5(4), 670–698.
https://doi.org/10.1137/050629367

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic Differ-
entiation in Machine Learning: a Survey. Journal of Machine Learning Research, 18(153),
1–43. http://jmlr.org/papers/v18/17-468.html

Bellman, R. E. (2003). Dynamic Programming (Dover Books on Computer Science). Dover
Publications. ISBN: 0486428095

Borowka, S., Heinrich, G., Jahn, S., Jones, S. P., Kerner, M., & Schlenk, J. (2019). A
GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec. Computer Physics
Communications, 240, 120–137. https://doi.org/10.1016/j.cpc.2019.02.015

Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7,
1–49. https://doi.org/10.1017/S0962492900002804

Campolieti, G., & Makarov, R. (2007). Pricing path-dependent options on state dependent
volatility models with a Bessel bridge. International Journal of Theoretical and Applied
Finance, 10(01), 51–88. https://doi.org/10.1142/s0219024907004081

Carrazza, S., & Cruz-Martinez, J. M. (2020). VegasFlow: accelerating Monte Carlo simulation
across multiple hardware platforms. Computer Physics Communications, 254, 107376.
https://doi.org/10.1016/j.cpc.2020.107376

Izzo, D., & Gómez, P. (2021). Geodesy of irregular small bodies via neural density fields:
geodesyNets. http://arxiv.org/abs/2105.13031

Kersevan, B. P., & Richter-Was, E. (2013). The Monte Carlo event generator AcerMC versions
2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Computer
Physics Communications, 184(3), 919–985. https://doi.org/10.1016/j.cpc.2012.10.032

Lepage, G. P. (1978). A new algorithm for adaptive multidimensional integration. Journal of
Computational Physics, 27(2), 192–203. https://doi.org/10.1016/0021-9991(78)90004-9

Lepage, G. P. (2020). Adaptive Multidimensional Integration: VEGAS Enhanced. https:
//doi.org/10.1016/j.jcp.2021.110386

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A.

4torchquad documentation on Read the Docs, https://torchquad.readthedocs.io/

Gómez et al., (2021). torchquad: Numerical Integration in Arbitrary Dimensions with PyTorch. Journal of Open Source Software, 6(64), 3439.
https://doi.org/10.21105/joss.03439

3

https://worldcat.org/isbn/9781931971331
https://doi.org/10.1137/050629367
http://jmlr.org/papers/v18/17-468.html
https://worldcat.org/isbn/0486428095
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1142/s0219024907004081
https://doi.org/10.1016/j.cpc.2020.107376
http://arxiv.org/abs/2105.13031
https://doi.org/10.1016/j.cpc.2012.10.032
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016/j.jcp.2021.110386
https://torchquad.readthedocs.io/
https://doi.org/10.21105/joss.03439


Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Ray, J., Marzouk, Y. M., & Najm, H. N. (2011). A Bayesian approach for estimating bioterror
attacks from patient data. Statistics in Medicine, 30(2), 101–126. https://doi.org/10.
1002/sim.4090

Sag, T. W., & Szekeres, G. (1964). Numerical Evaluation of High-Dimensional Integrals.
Mathematics of Computation, 18(86), 245–253. https://doi.org/10.2307/2003298

Schlömer, N., Papior, N., Arnold, D., & Zetter, R. (2021). Nschloe/quadpy v0.16.6 (Version
v0.16.6) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4519699

Ubale, P. V. (2012). Numerical Solution of Boole’s rule in Numerical Integration By Using
General Quadrature Formula. Bulletin of Society for Mathematical Services and Standards,
2(1), 1–5. https://doi.org/10.18052/www.scipress.com/BSMaSS.2.1

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Wu, H.-Z., Zhang, J.-J., Pang, L.-G., & Wang, Q. (2020). ZMCintegral: A package for multi-
dimensional Monte Carlo integration on multi-GPUs. Computer Physics Communications,
248, 106962. https://doi.org/10.1016/j.cpc.2019.106962

Gómez et al., (2021). torchquad: Numerical Integration in Arbitrary Dimensions with PyTorch. Journal of Open Source Software, 6(64), 3439.
https://doi.org/10.21105/joss.03439

4

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1002/sim.4090
https://doi.org/10.1002/sim.4090
https://doi.org/10.2307/2003298
https://doi.org/10.5281/zenodo.4519699
https://doi.org/10.18052/www.scipress.com/BSMaSS.2.1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.cpc.2019.106962
https://doi.org/10.21105/joss.03439

	Summary
	Statement of Need
	Implemented Integration Methods
	Installation & Contribution
	Tutorials
	References

