
mpi4jax: Zero-copy MPI communication of JAX arrays
Dion Häfner∗1 and Filippo Vicentini†2

1 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 2 Institute of Physics,
École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

DOI: 10.21105/joss.03419

Software
• Review
• Repository
• Archive

Editor: Kelly Rowland
Reviewers:

• @1313e
• @Himscipy

Submitted: 10 June 2021
Published: 01 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The tensor framework JAX (Bradbury et al., 2018) combines expressivity and performance
while retaining an accessible pure Python interface. Expressivity is achieved by treating func-
tions as first-class objects, while efficiency is obtained by compiling to machine code just-
ahead-of-time.
However, machine learning and (high-performance) scientific computing are often conducted
on different hardware stacks: Machine learning is typically done on few highly parallel units
(GPUs or TPUs) connected to a single host CPU, while scientific models tend to run on
clusters of dozens to thousands of CPUs. Unfortunately, support from JAX and the underlying
compiler XLA is more mature in the former case. Notably, there is so far no built-in solution
to communicate data between different nodes that is as sophisticated as the widely used MPI
(Message Passing Interface) libraries (Forum, 1994).
We attempt to fill this gap and introduce mpi4jax, a Python library bringing first-class support
for the most important MPI operations to JAX. We achieve this by defining a set of primitive
functions matching MPI’s operations, instructing JAX how to transform them and providing
a native implementation to execute them. This has the result that users can communicate
arbitrary JAX data without performance or usability penalties. In particular, mpi4jax is
able to communicate data without copying from CPU and GPU memory (if built against a
CUDA-aware MPI library) between one or multiple hosts (e.g. via an Infiniband network on a
cluster).
This also means that existing applications using NumPy and mpi4py can be ported seamlessly
to the JAX ecosystem for potentially significant performance gains.

Statement of Need

For decades, high-performance computing has been done primarily in low-level programming
languages like Fortran or C. But the ubiquity of Python is starting to spill into this domain as
well, thanks to its strong library ecosystem and wide adoption throughout the sciences.
With a combination of NumPy (Harris et al., 2020) and mpi4py (Dalcín et al., 2005), Python
users can already build massively parallel applications without delving into low-level program-
ming languages, which is often advantageous when human time is more valuable than com-
puting time. However, such high-level frameworks are not always able to achieve peak per-
formance, especially in more niche workloads.
Google’s JAX library leverages the XLA compiler and supports just-in-time compilation (JIT) of
(a subset of) Python code to XLA primitives. The result is highly competitive performance on

∗Contributed equally, order determined by coin flip.
†Contributed equally, order determined by coin flip.

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

1

https://doi.org/10.21105/joss.03419
https://github.com/openjournals/joss-reviews/issues/3419
https://github.com/mpi4jax/mpi4jax
https://doi.org/10.5281/zenodo.5337529
https://github.com/1313e
https://github.com/Himscipy
http://creativecommons.org/licenses/by/4.0/
https://github.com/dionhaefner/pyhpc-benchmarks
https://github.com/dionhaefner/pyhpc-benchmarks
https://github.com/dionhaefner/pyhpc-benchmarks
https://github.com/dionhaefner/pyhpc-benchmarks

both CPU and GPU (Häfner, 2020). This approach, conceptually similar to Julia’s deferred
compilation model (Bezanson et al., 2017), achieves low-level performance in a high-level
language. With a strong performance baseline on single devices, the only thing missing is easy
scalability to massively parallel hardware stacks, which we supply here.
Two real-world use cases for mpi4jax are the ocean model Veros (Häfner et al., 2018) and
the machine learning toolkit for many-body quantum systems NetKet (Carleo et al., 2019):

• In the case of Veros, MPI primitives are needed to communicate overlapping grid cells
between processes. Communication primitives are buried deep into the physical subrou-
tines. Therefore, refactoring the codebase to leave jax.jit every time data needs to
be communicated would severely break the control flow of the model and incur a hefty
performance loss (in addition to the cost of copying data from and to JAX). Through
mpi4jax, it is possible to apply the JIT compiler to whole subroutines to avoid this
entirely.

• In the case of NetKet, a high efficiency algorithm for natural gradient optimization
requires finding the solution of a large linear system Ax = y. The matrix A is deter-
mined by running automatic differentiation on a neural network model whose inputs
might be distributed across several computing nodes and GPUs. Therefore, the need to
differentiate through distributed reduction operations inside of a linear solver arises.

Implementation

mpi4jax combines JAX’s custom call mechanism with mpi4py.libmpi (which exposes MPI
C primitives as Cython callables).
The implementation of a primitive in mpi4jax consists of two parts:

1. A Python module, registering a new primitive with JAX. JAX primitives consist of an
abstract evaluation rule and several translation rules. Abstract evaluation rules are used
by the compiler to infer the output shapes and data types without running the actual
computation, while translation rules determine the specific computational kernel and
prepare the input buffers.
In particular, we need to ensure that all numerical input data is of the expected type
(e.g., by converting Python integers to the C type uintptr_t) before passing it on to
XLA. A different translation rule is necessary for every type of backend, such as CPUs,
GPUs and TPUs.
On specific primitives we also define a transposition and JVP (Jacobian-vector product)
rule to support forward and reverse mode automatic differentiation.

2. A Cython (Behnel et al., 2011) function that casts raw input arguments passed by XLA
to their true C type, so they can be passed on to MPI. On CPU, arguments are given in
the form of arrays of void pointers, void**, so we use static casts for conversion. On
GPU, input data is given as a raw char array, char*, which we deserialize to a custom
Cython struct whose fields represent the input data.
On GPU, our Cython bridge also supports copying the data from device to host and back
before and after calling MPI (by linking mpi4jax to the CUDA runtime library). This
way, we support the communication of GPU data via main memory if the underlying
MPI library is not built with CUDA support (at a minor performance penalty).

This is sufficient for our primitives to be callable from compiled JAX code. However, there is
one additional complication: we need to take special care to ensure that MPI statements are
not re-ordered. Consider the following example:

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

2

https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

@jax.jit
def exchange_data(arr):

if rank == 0:
rank 0 sends, then receives
mpi4jax.send(arr, dest=1)
newarr = mpi4jax.recv(arr, source=1)

else:
rank 1 receives, then sends
newarr = mpi4jax.recv(arr, source=0)
mpi4jax.send(arr, dest=0)

return newarr

As JAX and XLA operate on the assumption that all primitives are pure functions without
side effects, the compiler is in principle free to re-order the send and recv statements above.
This would typically lead to a deadlock or crash, as both processes might wait for each others’
input at the same time.
The solution to this in JAX is a token mechanism that involves threading a dummy token
value as input and output through each primitive. This introduces a fake data dependency
between subsequent calls using the token, which prevents XLA from re-ordering them relative
to each other.
The example above, using proper token management, reads:

@jax.jit
def exchange_data(arr):

if rank == 0:
token = mpi4jax.send(arr, dest=1)
newarr, token = mpi4jax.recv(arr, source=1, token=token)

else:
newarr, token = mpi4jax.recv(arr, source=0)
token = mpi4jax.send(arr, dest=0, token=token)

return newarr

As a result, we are successfully able to execute MPI primitives just as if they were JAX
primitives. This incurs minimal overhead, as no data is copied between JAX and MPI. All
mpi4jax primitives operate directly on device memory addresses (this is what we refer to as
zero-copy).
We can quantify this overhead by comparing the runtime of a JAX function with and without
using an mpi4jax call. We also exclude the time spent inside the MPI library by using
mpi4jax’s debug logging mechanism (benchmark script available online). This reveals an
overhead of about 1µs, which is negligible in virtually any real-world application.
As of yet, mpi4jax supports the MPI operations allgather, allreduce, alltoall, bcast,
gather, recv, reduce, scan, scatter, send, and sendrecv (Forum, 1994). Most still
unsupported operations such as gatherv could be implemented with little additional work if
needed by an application.

Example & Benchmark: Non-linear Shallow Water Solver

As a demo application, and to use as a benchmark, we have ported a non-linear shallow water
solver to JAX and parallelized it with mpi4jax (Figure 1).
In this simple example, all workers operate on a rectangular region of the 2D domain (split
evenly into [nproc / 2, 2] chunks). All communication is handled via halo exchanges, i.e.,

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

3

https://gist.github.com/dionhaefner/b071b8fa581f12874a98963a19752e7a
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

each chunk contains 1 extra cell around the perimeter of the domain and exchanges it with its
neighbors when needed. As this is a simple problem on a regular grid, the mesh partitioning
is done manually.

0 200 400 600 800 1000 1200 1400 1600
x (km)

0

200

400

600

800

y
(k

m
)

t = 10.02 days

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Surface height anomaly (m)

Figure 1: Output snapshot of the non-linear shallow water model. Shading indicates surface height,
quivers show the current’s velocity field.

The full example is available in the mpi4jax repository. It defines a function enforce_bou
ndaries where we use mpi4jax to handle halo exchanges between all MPI processes. The
core of it reads similar to this (plus some special cases to take care of processes at the edges
of the domain):

@jax.jit
def enforce_boundaries(arr, grid, token):

start sending west / receiving east, go clockwise
send_order = ("west", "north", "east", "south")
recv_order = ("east", "south", "west", "north")

loop over neighbors
for send_dir, recv_dir in zip(send_order, recv_order):

determine neighboring processes
send_proc = proc_neighbors[send_dir]
recv_proc = proc_neighbors[recv_dir]

determine data to send
send_idx = overlap_slices_send[send_dir]
send_arr = arr[send_idx]

determine where to place received data
recv_idx = overlap_slices_recv[recv_dir]
recv_arr = jnp.empty_like(arr[recv_idx])

execute send-receive operation
recv_arr, token = mpi4jax.sendrecv(

send_arr,
recv_arr,

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

4

https://github.com/PhilipVinc/mpi4jax/blob/aeba13202a9f55c6e0f905f7436059a3f4cd3e9d/examples/shallow_water.py
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

source=recv_proc,
dest=send_proc,
comm=mpi_comm,
token=token,

)

update array with received data
arr = arr.at[recv_idx].set(recv_arr)

return arr

Then, it can be used in the physical simulation like this:

@jax.jit
def shallow_water_step(state):

token = jax.lax.create_token()
...
fe = fe.at[1:-1, 1:-1].set(
0.5 * (hc[1:-1, 1:-1] + hc[1:-1, 2:]) * u[1:-1, 1:-1]

)
fn = fn.at[1:-1, 1:-1].set(
0.5 * (hc[1:-1, 1:-1] + hc[2:, 1:-1]) * v[1:-1, 1:-1]

)
fe, token = enforce_boundaries(fe, "u", token)
fn, token = enforce_boundaries(fn, "v", token)
...

Note how we are able to mix boundary communication with numerical computation in the
same jax.jit block. This would not be possible without mpi4jax.
To verify the performance scaling of the solver with additional processes, we performed a
rudimentary benchmark by running a bigger version of this example (shape 3600 × 1800) on
several combinations of platform (CPU / GPU) and number of processes.

Platform # processes Elem. per worker Time (s) Rel. speedup
CPU 1 (NumPy) 6.5M 770 1

CPU 1 6.5M 112 6.9
2 3.2M 90 8.6
4 1.6M 39 19
6 0.8M 29 27
8 0.4M 21 37
16 0.2M 16 48

GPU 1 6.5M 6.3 122
2 3.2M 3.9 197

(The test hardware consists of 2x Intel Xeon E5-2650 v4 CPUs and 2x NVIDIA Tesla P100
GPUs.)
As we can see, switching from NumPy to JAX already yields a substantial speedup, which we
can then amplify by scaling to additional CPUs or GPUs.
More in-depth benchmarks on larger architectures are available for the Veros ocean model,

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

5

https://veros.readthedocs.io/en/latest/more/benchmarks.html
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

which uses mpi4jax to parallelize its JAX backend.

Outlook

In this paper, we introduced mpi4jax, which allows zero-copy communication of JAX-owned
data. mpi4jax provides an implementation of the most important MPI operations in a way
that is usable from JAX compiled code.
However, JAX is much more than just a JIT compiler. It is also a full-fledged differentiable
programming framework by providing tools for automatic differentiation (e.g. via jax.grad,
jax.vjp, and jax.jvp). Differentiable programming is a promising new paradigm to combine
advances in machine learning and physical modelling (Degrave et al., 2019; Li et al., 2021),
and being able to freely distribute those models among different nodes will allow for even
more powerful applications.
Combining automatic-differentiation with the multi-process nature of MPI workloads is not
trivial, and right now mpi4jax allows to differentiate only few communication primitives.
An interesting future development for the library will be to properly support the whole set
of operations, enabling fully differentiable, distributed physical simulations without additional
user code.

Acknowledgements

We thank all JAX developers, in particular Matthew Johnson and Peter Hawkins, for their
outstanding support on the many issues we opened. We also thank Himanshu Sharma and
Ellert van der Velden for their insightful review comments.
DH acknowledges funding from the Danish Hydrocarbon Research and Technology Centre
(DHRTC).
FV acknowledges support from G. Carleo and funding from the Simons Foundation and Ecole
Polytechnique Federale de Lausanne.

References

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:
The best of both worlds. Computing in Science and Engg., 13(2), 31–39. https://doi.
org/10.1109/MCSE.2010.118

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.2.5) [Computer software]. http:
//github.com/google/jax

Carleo, G., Choo, K., Hofmann, D., Smith, J. E. T., Westerhout, T., Alet, F., Davis, E. J.,
Efthymiou, S., Glasser, I., Lin, S.-H., Mauri, M., Mazzola, G., Mendl, C. B., Nieuwenburg,
E. van, O’Reilly, O., Théveniaut, H., Torlai, G., Vicentini, F., & Wietek, A. (2019).
NetKet: A machine learning toolkit for many-body quantum systems. SoftwareX, 10,
100311. https://doi.org/10.1016/j.softx.2019.100311

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

6

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1137/141000671
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

Dalcín, L., Paz, R., & Storti, M. (2005). MPI for python. Journal of Parallel and Distributed
Computing, 65(9), 1108–1115. https://doi.org/10.1016/j.jpdc.2005.03.010

Degrave, J., Hermans, M., Dambre, J., & wyffels, F. (2019). A differentiable physics engine
for deep learning in robotics. Frontiers in Neurorobotics, 13. https://doi.org/10.3389/
fnbot.2019.00006

Forum, M. P. (1994). MPI: A message-passing interface standard. University of Tennessee.
Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Häfner, D. (2020). PyHPC benchmarks. In GitHub repository. GitHub. https://github.com/
dionhaefner/pyhpc-benchmarks

Häfner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R. B., Jochum, M., Nuterman,
R., & Vinter, B. (2018). Veros v0.1 – a fast and versatile ocean simulator in pure
Python. Geoscientific Model Development, 11(8), 3299–3312. https://doi.org/10.5194/
gmd-11-3299-2018

Li, L., Hoyer, S., Pederson, R., Sun, R., Cubuk, E. D., Riley, P., & Burke, K. (2021). Kohn-
sham equations as regularizer: Building prior knowledge into machine-learned physics.
Phys. Rev. Lett., 126, 036401. https://doi.org/10.1103/PhysRevLett.126.036401

Häfner et al., (2021). mpi4jax: Zero-copy MPI communication of JAX arrays. Journal of Open Source Software, 6(65), 3419. https:
//doi.org/10.21105/joss.03419

7

https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.3389/fnbot.2019.00006
https://doi.org/10.3389/fnbot.2019.00006
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/dionhaefner/pyhpc-benchmarks
https://github.com/dionhaefner/pyhpc-benchmarks
https://doi.org/10.5194/gmd-11-3299-2018
https://doi.org/10.5194/gmd-11-3299-2018
https://doi.org/10.1103/PhysRevLett.126.036401
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

	Summary
	Statement of Need
	Implementation
	Example & Benchmark: Non-linear Shallow Water Solver
	Outlook
	Acknowledgements
	References

