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Summary

River deltas provide many societal benefits, and sustainability of these landforms may be im-
pacted by human modification and global climate change. Reduced-complexity numerical delta
models incorporate limited physical processes, allowing researchers to assess the spatiotempo-
ral evolution of landscape response to individual processes and environmental forcings. Isolat-
ing individual processes is useful to understand, for example, shifting delta morphology due to
sea-level rise, changing vegetal cover, or flooding intensity. As a result, many numerical delta
models have been proposed in the literature, and results from these studies are difficult to
compare because of various design and implementation choices. pyDeltaRCM (v2.0) delivers
a computationally efficient and easy-to-customize implementation of the DeltaRCM numerical
model (Liang, Voller, et al., 2015), enabling comparison and reproducibility in studies of delta
change due to various environmental forcings.

Statement of need

River deltas are societally important landforms because they provide arable land, deep inland
ports, and are home to hundreds of millions of people globally (Edmonds et al., 2020). Existing
at the interface between landmasses and water bodies, deltas are impacted by a multitude
of processes arising in both of these domains. For example, changes in sediment input to
the delta modulate the rate at which new land is built; similarly, rising water levels in the
downstream basin create flooded land. In addition to natural processes, human landscape
modification renders deltaic environments more sensitive to global climate change into the
future (Paola et al., 2011). Demand to understand natural delta processes, and how these
processes will respond to various environmental forcings, has led to a proliferation of numerical
delta models in the literature (Overeem et al., 2005).
The DeltaRCM delta model (Liang, Voller, et al., 2015) has gained popularity among geo-
morphologists due to an attractive balance of computational cost, realism, and interpretability
(Larsen et al., 2016). For example, studies have employed the DeltaRCM design to examine
delta morphology and dynamism response to sea-level rise and regional subsidence (Liang,
Van Dyk, et al., 2016; Liang, Kim, et al., 2016), as well as extended model design to simulate
delta evolution with vegetation (Lauzon & Murray, 2018) and ice and permafrost (Lauzon
et al., 2019; Piliouras et al., 2021). However, comparison among these studies is difficult,
owing to disparate code bases, various implementation choices, lack of version control, and
proprietary software dependencies.
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Background

Here, version 2.0 of pyDeltaRCM is introduced; pyDeltaRCM is a computationally efficient,
free and open source, and easy-to-customize numerical delta model based on the original
DeltaRCM design. The original DeltaRCM framework is inspired by well-understood physical
phenomena, and models mass movement as a probabilistic weighted random-walk process
coupled with a set of hierarchical rules; the model is extensively described in Liang, Voller, et
al. (2015) and Liang, Geleynse, et al. (2015).
This same framework is the basis for pyDeltaRCM v2.0, with a few modifications selected
only to resolve known numerical instabilities, improve computational efficiency, and support
reproducible simulations. PyDeltaRCM depends only on common Python packages numpy
(Harris et al., 2020), matplotlib (Hunter, 2007), scipy (Virtanen et al., 2020), netCDF4,
pyyaml, and numba (Lam et al., 2015).

Figure 1: Simulation with pyDeltaRCM v2.0, default parameter set, and random seed: 101519
19. Simulation was run for 4000 timesteps, and assumes 10 days of bankfull discharge per year;
computational time was ~2 hours.

Flexible and easy to use

pyDeltaRCM is an object-oriented package, providing the central model class DeltaModel.
By creating custom model behavior as subclasses of DeltaModel, researchers can easily add,
subtract, and modify model components without altering code that is not pertinent to the
science objective. Importantly, separating custom code from core model code makes clear how
different studies can be compared. The pyDeltaRCM documentation provides several examples
for how to implement custom model behavior on top of the core DeltaModel object.
pyDeltaRCM also provides infrastructure to accelerate scientific exploration, such as the ability
to configure multiple simulations from a single file. Additionally, a preprocessor orchestrates
parallel simulations for multi-core systems (optionally), and implements several tools to
support simulations exploring a parameter space. For example, matrix expansion converts
lists of parameters into an n-dimensional set of simulations. Similarly, replicate simulations
can be created via an ensemble specification.
Reproducibility and computational efficiency were important priorities in pyDeltaRCM devel-
opment. For example, to-disk logging records all parameters, system-level and version data,
and random-seed information to ensure that all runs can be recreated. Additionally, “check-
point” infrastructure has been added to the model, which records simulation progress during
computation and can later resume model runs for further simulation. Finally, pyDeltaRCM
uses numba for computational optimization (Lam et al., 2015), and does not depend on any
proprietary software.
pyDeltaRCM component units and integrations are thoroughly documented and tested.
Component-level documentation describes implementation notes, whereas narratives in
“Guide” and “Example” documentation describes high-level model design and best practices
for model use and development. pyDeltaRCM also couples with other numerical models via
the CSDMS Basic Model Interface 2.0 (DeltaRCM Team, n.d.; Hutton et al., 2020).
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