
ImSwitch: Generalizing microscope control in Python
Xavier Casas Moreno1, Staffan Al-Kadhimi1, Jonatan Alvelid1,
Andreas Bodén1, and Ilaria Testa1

1 SciLifeLab, KTH Royal Institute of Technology
DOI: 10.21105/joss.03394

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @uellue
• @beniroquai
• @untzag

Submitted: 30 April 2021
Published: 14 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The constant development of novel microscopy methods with an increased number of ded-
icated hardware devices poses significant challenges to software development. On the one
hand, software should control complex instruments, provide flexibility to adapt between dif-
ferent microscope modalities, and be open and resilient to modification and extension by
users and developers. On the other hand, the community needs software that can satisfy the
requirements of the users, such as a user-friendly interface and robustness of the code. In
this context, we present ImSwitch, based on the model-view-presenter (MVP) design pattern
(Potel, 1996), with an architecture that uses polymorphism to provide a generalized solution
to microscope control. Consequently, ImSwitch makes it possible to adapt between differ-
ent modalities and aims at satisfying the needs of both users and developers. We have also
included a scripting module for microscope automation applications and a structure to effi-
ciently share data between different modules, such as hardware control and image processing.
Currently, ImSwitch provides support for light microscopy techniques but could be extended
to other microscopy modalities requiring multiple hardware synchronization.

Statement of need

As described in Chhetri et al. (2020), there is a need to have a generalized solution for
microscope control, since the usual approach in microscopy labs is to create their own custom-
built software. A complete list is available in Stuurman et al. (2021). ImSwitch is designed
to be compatible with many different microscope modalities and customizable to the specific
design of individual custom-built microscopes, all while using the same code. We would like
to involve the community in further developing ImSwitch in this direction, believing that it is
possible to integrate current state-of-the-art solutions into one unified software.

Architecture and implementation

ImSwitch consists of software modules, e.g., hardware control and image processing, that
exchange data through the ModuleCommunicationChannel (Figure 1). Modules can also
expose an internal Application Programming Interface (API) to the scripting platform, allowing
user-defined scripts to interact with them without requiring the user to modify the code itself
to meet their demands. Each of the modules follows the MVP architecture, which has three
primary layers: model, view, and presenter. The hardware control module has the following
structure:

Moreno et al., (2021). ImSwitch: Generalizing microscope control in Python. Journal of Open Source Software, 6(64), 3394. https://doi.org/
10.21105/joss.03394

1

https://doi.org/10.21105/joss.03394
https://github.com/openjournals/joss-reviews/issues/3394
https://github.com/kasasxav/ImSwitch
https://doi.org/10.5281/zenodo.5196462
https://kevinmoerman.org
https://github.com/uellue
https://github.com/beniroquai
https://github.com/untzag
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03394
https://doi.org/10.21105/joss.03394


• The model layer represents the backend of the program. It has direct access to the
hardware through a device sub-layer, which contains the interfaces of the devices, drivers,
and Python packages. To provide polymorphism, we have added another sub-layer in
the model that consists of what we name managers and multi-managers. The managers
are objects that will specify how to control the devices, and which packages should be
used. For example, a microscope setup with two cameras and three point detectors will
make use of a multi-manager called DetectorsManager, which in turn will manage two
instances of CameraManager and three instances of PointDetectorManager. Both
managers implement the same functionality through identical function calls but with
different implementations.

• The view layer is the Graphical User Interface (GUI). The GUI for each component of
the hardware control module is represented by a view element called a Widget. The view
layer is linked to the presenter layer by linking each Widget with a WidgetController.
The presenters (WidgetControllers) manipulate the views (Widgets) but not vice
versa.

• We implemented the presenter layer using two sub-layers: the first sub-layer contains
WidgetControllers that mainly read the input of the user through the view and
communicate it to the MasterController; the second sub-layer has the MasterCont
roller that directly interacts with the managers. The CommunicationChannel serves
as a platform to share demands and information between WidgetControllers.

Figure 1: Architecture of ImSwitch

Moreno et al., (2021). ImSwitch: Generalizing microscope control in Python. Journal of Open Source Software, 6(64), 3394. https://doi.org/
10.21105/joss.03394

2

https://doi.org/10.21105/joss.03394
https://doi.org/10.21105/joss.03394


We use PyQt (PyQT, 2012) for the GUI layout, thread management, and event management;
Napari (napari contributors, 2019) for image visualization, which can easily integrate multiple
image layers and supports plugins for image processing; and HDF5 (The HDF Group, 2000-
2010) for storing image data and metadata, including all parameters of each experiment and
acquisition. The user can readily load metadata from stored files into ImSwitch, allowing
experiment acquisition from templates.
Central to the concept of allowing modularity is the use of JSON configuration files to de-
fine different microscopes. They contain information about the hardware devices and their
connections, and the GUI tools to be loaded.
As a proof of concept ImSwitch has been implemented to control the various micro-
scopes of our lab: point-scanning STED/confocal (Alvelid & Testa, 2019) and parallelized
RESOLFT/confocal (MoNaLISA) (Masullo et al., 2018). These microscopes were previously
controlled with a combination of purpose-built software that were microscope-specific
or closed-source software. The reader can find more details about the implementations
and documentation of ImSwitch at imswitch.readthedocs.io. We have implemented the
image processing module for reconstructing MoNaLISA images using our pre-existing shared
library. Other microscope modalities requiring designated reconstruction or processing could
implement separate modules, using the ModuleCommunicationChannel to retrieve the data,
and readily load them into ImSwitch.

Comparison to other software

µManager (Edelstein et al., 2010) is a free and open-source software for microscope con-
trol written in Java and C++, with pervasive driver support to different devices and widely
used by microscopists. However, µManager does not adapt fully to complex microscopes
that require scanning and triggering or other intricate operations. Moreover, software mod-
ification and extension are difficult due to the programming languages and the architecture.
Python bindings were recently made available for MMCore, which is the device control layer
of µManager, making it compatible with ImSwitch implementation (through the model device
sub-layer). Pycro-Manager (Pinkard et al., 2021) provides access to µManager from Python
and combines it with image processing and multiple applications. However, custom plugins
must still be written for the µManager Java layer, making it complicated to use in complex
devices without a pre-existing specialized implementation. This limits the user-friendliness for
microscope users.
Microscope (Pinto et al., 2021) is a recent alternative for providing a resilient device layer
in Python for controlling microscope devices. It is possible to script microscope experiments
and use Cockpit (Phillips et al., 2021) as a GUI. However, the GUI is still limited to simpler
microscopes. The most substantial focus of Microscope is to provide a standard interface to
control microscope device types. Therefore, it could be integrated with ImSwitch to work
towards software generalization by increasing compatibility and including even more devices.
TANGO Controls (Tango Controls, 2015) is a software solution for distributed control systems
that provides a communication protocol and an object-oriented architecture for controlling
devices of a range of applications. Similar to TANGO Controls, EPICS (Dalesio et al., 1991)
focuses on supporting applications that operate complex devices such as particle accelerators
and telescopes. While their design and architecture are conceptually similar to ImSwitch,
our focus resides on microscopy applications and, in particular, image-based control systems
and related hardware when performing experiments and handling data (image acquisition,
reconstruction, and analysis). We also provide general tools for microscope users and builders
of custom-made microscopes.

Moreno et al., (2021). ImSwitch: Generalizing microscope control in Python. Journal of Open Source Software, 6(64), 3394. https://doi.org/
10.21105/joss.03394

3

https://imswitch.readthedocs.io
https://pypi.org/project/pymmcore/
https://valelab4.ucsf.edu/~MM/doc/MMCore/html/class_c_m_m_core.html
https://doi.org/10.21105/joss.03394
https://doi.org/10.21105/joss.03394


Acknowledgements

We would like to acknowledge the authors of Tempesta, a further development of Tormenta
(Barabas & Masullo, 2016), for their contributions to earlier software and inspiration for a user-
friendly interface. We are also thankful to Francesca Pennacchietti for testing and providing
feedback.
We thank the Swedish Foundation for Strategic Research (SSF) funding FFL15-0031 for
supporting the project.

References

Alvelid, J., & Testa, I. (2019). Stable stimulated emission depletion imaging of extended
sample regions. Journal of Physics D: Applied Physics, 53. https://doi.org/10.1088/
1361-6463/ab4c13

Barabas, F., & Masullo, L. A. (2016). Note: Tormenta: An open source Python-powered
control software for camera based optical microscopy. Review of Scientific Instruments,
87(126103). https://doi.org/10.1063/1.4972392

Chhetri, R., Preibisch, S., & Stuurman, N. (2020). Software for microscopy workshop white
paper. http://arxiv.org/abs/2005.00082

Dalesio, L. R., Kozubal, A. J., & Kraimer, M. R. (1991). EPICS architecture. https://www.
osti.gov/biblio/6110347

Edelstein, A., Amodaj, N., Hoover, K., Vale, R., & Stuurman, N. (2010). Computer control
of microscopes using âµmanager. Current Protocols in Molecular Biology, 92(1), 14.20.1–
14.20.17. https://doi.org/10.1002/0471142727.mb1420s92

Masullo, L. A., Bodén, A., Pennacchietti, F., Coceano, G., Ratz, M., & Testa, I. (2018).
Enhanced photon collection enables four dimensional fluorescence nanoscopy of living sys-
tems. Nat Commun, 9(3281). https://doi.org/10.1038/s41467-018-05799-w

napari contributors. (2019). napari: a multi-dimensional image viewer for python. https:
//doi.org/doi:10.5281/zenodo.3555620

Phillips, M. A., Pinto, D. M. S., Hall, N., Mateos-Langerak, J., Parton, R. M., Titlow, J.,
Stoychev, D. V., Parks, T., Pinto, T. S., Sedat, J. W., Booth, M. J., Davis, I., & Dobbie,
I. M. (2021). Microscope-cockpit: Python-based bespoke microscopy for bio-medical
science. bioRxiv. https://doi.org/10.1101/2021.01.18.427178

Pinkard, H., Stuurman, N., Ivanov, I. E., Anthony, N. M., Ouyang, W., Li, B., Yang,
B., Tsuchida, M. A., Chhun, B., Zhang, G., Mei, R., Anderson, M., Shepherd, D.
P., Hunt-Isaak, I., Dunn, R. L., Jahr, W., Kato, S., Royer, L. A., Thiagarajah, J. R.,
… Waller, L. (2021). Pycro-manager: Open-source software for customized and repro-
ducible microscope control. Nature Methods, 18(3), 226–228. https://doi.org/10.1038/
s41592-021-01087-6

Pinto, D. M. S., Phillips, M. A., Hall, N., MateosLangerak, J., Stoychev, D., Pinto, T. S.,
Booth, M. J., Davis, I., & Dobbie, I. M. (2021). Python-microscope: High performance
control of arbitrarily complex and scalable bespoke microscopes. bioRxiv. https://doi.
org/10.1101/2021.01.18.427171

Potel, M. (1996). MVP: Model-view-presenter the taligent programming model for c++ and
java.

PyQT. (2012). PyQt reference guide. http://www.riverbankcomputing.com/static/Docs/
PyQt4/html/index.html

Moreno et al., (2021). ImSwitch: Generalizing microscope control in Python. Journal of Open Source Software, 6(64), 3394. https://doi.org/
10.21105/joss.03394

4

https://github.com/TestaLab/Tempesta
https://doi.org/10.1088/1361-6463/ab4c13
https://doi.org/10.1088/1361-6463/ab4c13
https://doi.org/10.1063/1.4972392
http://arxiv.org/abs/2005.00082
https://www.osti.gov/biblio/6110347
https://www.osti.gov/biblio/6110347
https://doi.org/10.1002/0471142727.mb1420s92
https://doi.org/10.1038/s41467-018-05799-w
https://doi.org/doi:10.5281/zenodo.3555620
https://doi.org/doi:10.5281/zenodo.3555620
https://doi.org/10.1101/2021.01.18.427178
https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1101/2021.01.18.427171
https://doi.org/10.1101/2021.01.18.427171
http://www.riverbankcomputing.com/static/Docs/PyQt4/html/index.html
http://www.riverbankcomputing.com/static/Docs/PyQt4/html/index.html
https://doi.org/10.21105/joss.03394
https://doi.org/10.21105/joss.03394


Stuurman, N., Preibisch, S., Babcock, H., & Chhetri, R. (2021). uScopeControl (Version
0.1). Zenodo. https://doi.org/10.5281/zenodo.4433237

Tango Controls. (2015). Tango controls. https://www.tango-controls.org
The HDF Group. (2000-20102000-2010). Hierarchical data format version 5. http://www.

hdfgroup.org/HDF5

Moreno et al., (2021). ImSwitch: Generalizing microscope control in Python. Journal of Open Source Software, 6(64), 3394. https://doi.org/
10.21105/joss.03394

5

https://doi.org/10.5281/zenodo.4433237
https://www.tango-controls.org
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://doi.org/10.21105/joss.03394
https://doi.org/10.21105/joss.03394

	Summary
	Statement of need
	Architecture and implementation
	Comparison to other software
	Acknowledgements
	References

