
FURY: advanced scientific visualization
Eleftherios Garyfallidis1, Serge Koudoro1, Javier Guaje1, Marc-Alex
Côté3, Soham Biswas4, David Reagan5, Nasim Anousheh1, Filipi
Silva2, Geoffrey Fox1, and FURY Contributors6

1 Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and
Engineering, Indiana University, Bloomington, IN, USA 2 Network Science Institute, Indiana
University, Bloomington, IN, USA 3 Microsoft Research, Montreal, Canada 4 Department of
Computer Science and Engineering, Institute of Engineering and Management, Kolkata, India 5
Advanced Visualization Lab, University Information Technology Services, Indiana University,
Bloomington, IN, USA 6 Anywhere in the UniverseDOI: 10.21105/joss.03384

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @chrishavlin
• @rougier
• @phamvanvung

Submitted: 08 April 2021
Published: 04 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Free Unified Rendering in pYthon (FURY), is a community-driven, open-source, and high-
performance scientific visualization library that harnesses the graphics processing unit (GPU)
for improved speed, precise interactivity, and visual clarity. FURY provides an integrated
API in Python that allows UI elements and 3D graphics to be programmed together. FURY
is designed to be fully interoperable with most projects of the Pythonic ecosystem that use
NumPy (C. R. Harris et al., 2020) for processing numerical arrays. In addition, FURY uses core
parts of VTK (Schroeder et al., 1996) and enhances them using customized shaders. FURY
provides access to the latest technologies such as raytracing, signed distance functionality,
physically based rendering, and collision detection for direct use in research. More importantly,
FURY enables students and researchers to script their own 3D animations in Python and
simulate dynamic environments.

Statement of need

The massive amount of data collected and analyzed by scientists in several disciplines requires
powerful tools and techniques able to handle these whilst still managing efficiently the com-
putational resources available. In some particular disciplines, these datasets not only are large
but also encapsulate the dynamics of their environment, increasing the demand for resources.
Although 3D visualization technologies are advancing quickly (Sellers & Kessenich, 2016),
their sophistication and focus on non-scientific domains makes it hard for researchers to use
them. In other words, most of the existing 3D visualization and computing APIs are low-level
(close to the hardware) and made for professional specialist developers. Because of these
issues, there is a significant barrier to many scientists and these powerful technologies are
rarely deployed to everyday research practices.
Therefore, FURY is created to address this necessity of high-performance 3D scientific visu-
alization in an easy-to-use API fully compatible with the Pythonic ecosystem.

FURY Architecture

FURY is built to be modular, scalable, and to respect software engineering principles including
a well-documented codebase and unit integration testing. The framework runs in all major

Garyfallidis et al., (2021). FURY: advanced scientific visualization. Journal of Open Source Software, 6(64), 3384. https://doi.org/10.21105/
joss.03384

1

https://doi.org/10.21105/joss.03384
https://github.com/openjournals/joss-reviews/issues/3384
https://github.com/fury-gl/fury
https://doi.org/10.5281/zenodo.5160945
http://danielskatz.org/
https://github.com/chrishavlin
https://github.com/rougier
https://github.com/phamvanvung
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03384
https://doi.org/10.21105/joss.03384


operating systems including multiple Linux distributions, Windows, and macOS. Also, it can
be used on the desktop and the web. The framework contains multiple interconnected engines,
modules, API managers as illustrated in Figure 1.

Figure 1: The FURY framework contains multiple interconnected engines to bring forward advanced
visualization capabilities. Additionally, it contains an integrated user interface module and an extend-
able I/O module. One of the most important classes is the Scene Manager that connects the actors
to the shaders, animations, and interactors for picking 3D objects. The actors are directly connected
to NumPy arrays with vertices, triangles, and connectivity information that is provided by the core
engine. These are then connected to the physics and networks engines.

Rendering Engine: This engine includes managers like scene, animation, shader, and picking
manager. The scene manager allows the visual objects to appear on a canvas. The picking
manager allows selecting specific objects in the scene. The animation manager allows users
to script their own 3D animations and videos with timelines allowing objects to act in spe-
cific times. Lastly, the shader manager provides several interfaces to different elements in
the OpenGL rendering pipeline. This manager allows developers to add customized shaders
snippets to the existing shaders included in the API.
Core Engine: This engine contains utilities for building actors from primitives and transform-
ing them. A primitive is an object that describes its shape and connectivity with elements
such as vertices and triangles.
Physics Engine: This engine allows us to either build collision mechanisms as used in molec-
ular dynamics or integrate well-established engines such as Bullet (Coumans & others, 2013)
and NVIDIA PhysX (M. Harris, 2009).
Networks Engine: This engine allows for the creation and use of graph systems and layouts.
Integrated User Interfaces Module: FURY contains its own user interfaces. This module
provides a range of UI 2D / 3D elements such as buttons, combo boxes, and file dialogues.
Nevertheless, users can easily connect to other known GUIs such as Qt or IMGUI if necessary.
I/O module: FURY supports a range of file formats from the classic OBJ format to the more
advanced GLTF format that can be used to describe a complete scene with many actors and
animations.
Interoperability: FURY can be used together with projects such as SciPy (Virtanen et al.,
2020), Matplotlib (Hunter, 2007), pandas (McKinney & others, 2010), scikit-learn (Pedregosa
et al., 2011), NetworkX (Hagberg et al., 2008), PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2016).
FURY’s visualization API can be compared with VisPy (Campagnola et al., 2015), glumpy
(Rougier, 2015), Mayavi (Ramachandran & Varoquaux, 2011), and others. VisPy and glumpy
directly connect to OpenGL. FURY uses OpenGL through Python VTK, which can be advan-
tageous because it can use the large stack of visualization algorithms available in VTK. This
is similar to Mayavi, however, FURY provides an easy and efficient way to ease interaction

Garyfallidis et al., (2021). FURY: advanced scientific visualization. Journal of Open Source Software, 6(64), 3384. https://doi.org/10.21105/
joss.03384

2

https://doi.org/10.21105/joss.03384
https://doi.org/10.21105/joss.03384


with 3D scientific data via integrated user interface elements and allows to reprogram the
low-level shaders for the creation of stunning effects (see Figure 2) not available in VTK.
Historically, FURY had also a different path than these libraries as it was originally created for
heavy-duty medical visualization purposes for DIPY (Garyfallidis et al., 2014). As the project
grew it spinned off as an independent project with applications across the domains of science
and engineering including visualization of nanomaterials and robotics simulations.

Figure 2: Top. Dynamic changes are shown as diffused waves on the surface of the horse visualized
with FURY. Showing here 4 frames at 4 different time points (t1−t4). A vertex and fragment shader
are used to calculate in real-time the mirroring texture and blend its colors with the blue-yellow
wave. Bottom. In FURY we create actors that contain multiple visual objects controlled by NumPy
arrays. Here an actor is generating 5 superquadrics with different properties (e.g. colors, directions,
metallicity) by injecting the information as NumPy arrays in a single call. This is one of the important
design choices that make FURY easier to use but also faster to render. Actors in FURY can contain
many objects. The user can select any of the objects in the actor. Here the user selected the first
object (spherical superquadric).

Acknowledgements

FURY is partly funded through NSF #1720625 Network for Computational Nanotechnology
- Engineered nanoBIO Node (Klimeck et al., 2008).

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A
system for large-scale machine learning. Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, 265–283. ISBN: 9781931971331

Campagnola, L., Klein, A., Larson, E., Rossant, C., & Rougier, N. P. (2015). VisPy: Harness-
ing the GPU for fast, high-level visualization. Proceedings of the 14th Python in Science
Conference. https://doi.org/10.25080/majora-7b98e3ed-00e

Coumans, E., & others. (2013). Bullet physics library. Open Source: Bulletphysics.org,
15(49), 5. http://www.bulletphysics.org

Garyfallidis et al., (2021). FURY: advanced scientific visualization. Journal of Open Source Software, 6(64), 3384. https://doi.org/10.21105/
joss.03384

3

https://worldcat.org/isbn/9781931971331
https://doi.org/10.25080/majora-7b98e3ed-00e
http://www.bulletphysics.org
https://doi.org/10.21105/joss.03384
https://doi.org/10.21105/joss.03384


Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., &
Nimmo-Smith, I. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers
in Neuroinformatics, 8, 8. https://doi.org/10.3389/fninf.2014.00008

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using NetworkX. Proceedings of the 7th Python in Science Conference, 11–15.
http://conference.scipy.org/proceedings/SciPy2008/paper_2/full_text.pdf

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Harris, M. (2009). CUDA fluid simulation in NVIDIA PhysX. SIGGRAPH Asia.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Annals of the History of

Computing, 9(03), 90–95. https://doi.org/10.1109/mcse.2007.55
Klimeck, G., McLennan, M., Brophy, S. P., Adams III, G. B., & Lundstrom, M. S. (2008).

Nanohub.org: Advancing education and research in nanotechnology. Computing in Science
& Engineering, 10(5), 17–23. https://doi.org/10.1109/MCSE.2008.120

McKinney, W., & others. (2010). Data structures for statistical computing in Python. Pro-
ceedings of the 9th Python in Science Conference, 445, 51–56. https://doi.org/10.25080/
majora-92bf1922-00a

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 32). Curran Associates, Inc. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(85), 2825–2830. http:
//jmlr.org/papers/v12/pedregosa11a.html

Ramachandran, P., & Varoquaux, G. (2011). Mayavi: 3D visualization of scientific data.
Computing in Science & Engineering, 13(2), 40–51. https://doi.org/10.1109/mcse.2011.
35

Rougier, N. P. (2015). Glumpy. EuroScipy. https://hal.inria.fr/hal-01217524
Schroeder, W. J., Martin, K. M., & Lorensen, W. E. (1996). The design and implementation

of an object-oriented toolkit for 3D graphics and visualization. Proceedings of Seventh
Annual IEEE Visualization ’96, 93–100. https://doi.org/10.1109/VISUAL.1996.567752

Sellers, G., & Kessenich, J. (2016). Vulkan programming guide: The official guide to learning
Vulkan. Addison-Wesley Professional. ISBN: 978-0134464541

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–
272. https://doi.org/10.1038/s41592-019-0686-2

Garyfallidis et al., (2021). FURY: advanced scientific visualization. Journal of Open Source Software, 6(64), 3384. https://doi.org/10.21105/
joss.03384

4

https://doi.org/10.3389/fninf.2014.00008
http://conference.scipy.org/proceedings/SciPy2008/paper_2/full_text.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/MCSE.2008.120
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.1109/mcse.2011.35
https://hal.inria.fr/hal-01217524
https://doi.org/10.1109/VISUAL.1996.567752
https://worldcat.org/isbn/978-0134464541
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03384
https://doi.org/10.21105/joss.03384

	Summary
	Statement of need
	FURY Architecture
	Acknowledgements
	References

