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Summary

Free Unified Rendering in pYthon (FURY), is a community-driven, open-source, and high-
performance scientific visualization library that harnesses the graphics processing unit (GPU)
for improved speed, precise interactivity, and visual clarity. FURY provides an integrated
API in Python that allows UI elements and 3D graphics to be programmed together. FURY
is designed to be fully interoperable with most projects of the Pythonic ecosystem that use
NumPy (C. R. Harris et al., 2020) for processing numerical arrays. In addition, FURY uses core
parts of VTK (Schroeder et al., 1996) and enhances them using customized shaders. FURY
provides access to the latest technologies such as raytracing, signed distance functionality,
physically based rendering, and collision detection for direct use in research. More importantly,
FURY enables students and researchers to script their own 3D animations in Python and
simulate dynamic environments.

Statement of need

The massive amount of data collected and analyzed by scientists in several disciplines requires
powerful tools and techniques able to handle these whilst still managing efficiently the com-
putational resources available. In some particular disciplines, these datasets not only are large
but also encapsulate the dynamics of their environment, increasing the demand for resources.
Although 3D visualization technologies are advancing quickly (Sellers & Kessenich, 2016),
their sophistication and focus on non-scientific domains makes it hard for researchers to use
them. In other words, most of the existing 3D visualization and computing APIs are low-level
(close to the hardware) and made for professional specialist developers. Because of these
issues, there is a significant barrier to many scientists and these powerful technologies are
rarely deployed to everyday research practices.
Therefore, FURY is created to address this necessity of high-performance 3D scientific visu-
alization in an easy-to-use API fully compatible with the Pythonic ecosystem.

FURY Architecture

FURY is built to be modular, scalable, and to respect software engineering principles including
a well-documented codebase and unit integration testing. The framework runs in all major
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operating systems including multiple Linux distributions, Windows, and macOS. Also, it can
be used on the desktop and the web. The framework contains multiple interconnected engines,
modules, API managers as illustrated in Figure 1.

Figure 1: The FURY framework contains multiple interconnected engines to bring forward advanced
visualization capabilities. Additionally, it contains an integrated user interface module and an extend-
able I/O module. One of the most important classes is the Scene Manager that connects the actors
to the shaders, animations, and interactors for picking 3D objects. The actors are directly connected
to NumPy arrays with vertices, triangles, and connectivity information that is provided by the core
engine. These are then connected to the physics and networks engines.

Rendering Engine: This engine includes managers like scene, animation, shader, and picking
manager. The scene manager allows the visual objects to appear on a canvas. The picking
manager allows selecting specific objects in the scene. The animation manager allows users
to script their own 3D animations and videos with timelines allowing objects to act in spe-
cific times. Lastly, the shader manager provides several interfaces to different elements in
the OpenGL rendering pipeline. This manager allows developers to add customized shaders
snippets to the existing shaders included in the API.
Core Engine: This engine contains utilities for building actors from primitives and transform-
ing them. A primitive is an object that describes its shape and connectivity with elements
such as vertices and triangles.
Physics Engine: This engine allows us to either build collision mechanisms as used in molec-
ular dynamics or integrate well-established engines such as Bullet (Coumans & others, 2013)
and NVIDIA PhysX (M. Harris, 2009).
Networks Engine: This engine allows for the creation and use of graph systems and layouts.
Integrated User Interfaces Module: FURY contains its own user interfaces. This module
provides a range of UI 2D / 3D elements such as buttons, combo boxes, and file dialogues.
Nevertheless, users can easily connect to other known GUIs such as Qt or IMGUI if necessary.
I/O module: FURY supports a range of file formats from the classic OBJ format to the more
advanced GLTF format that can be used to describe a complete scene with many actors and
animations.
Interoperability: FURY can be used together with projects such as SciPy (Virtanen et al.,
2020), Matplotlib (Hunter, 2007), pandas (McKinney & others, 2010), scikit-learn (Pedregosa
et al., 2011), NetworkX (Hagberg et al., 2008), PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2016).
FURY’s visualization API can be compared with VisPy (Campagnola et al., 2015), glumpy
(Rougier, 2015), Mayavi (Ramachandran & Varoquaux, 2011), and others. VisPy and glumpy
directly connect to OpenGL. FURY uses OpenGL through Python VTK, which can be advan-
tageous because it can use the large stack of visualization algorithms available in VTK. This
is similar to Mayavi, however, FURY provides an easy and efficient way to ease interaction
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with 3D scientific data via integrated user interface elements and allows to reprogram the
low-level shaders for the creation of stunning effects (see Figure 2) not available in VTK.
Historically, FURY had also a different path than these libraries as it was originally created for
heavy-duty medical visualization purposes for DIPY (Garyfallidis et al., 2014). As the project
grew it spinned off as an independent project with applications across the domains of science
and engineering including visualization of nanomaterials and robotics simulations.

Figure 2: Top. Dynamic changes are shown as diffused waves on the surface of the horse visualized
with FURY. Showing here 4 frames at 4 different time points (t1−t4). A vertex and fragment shader
are used to calculate in real-time the mirroring texture and blend its colors with the blue-yellow
wave. Bottom. In FURY we create actors that contain multiple visual objects controlled by NumPy
arrays. Here an actor is generating 5 superquadrics with different properties (e.g. colors, directions,
metallicity) by injecting the information as NumPy arrays in a single call. This is one of the important
design choices that make FURY easier to use but also faster to render. Actors in FURY can contain
many objects. The user can select any of the objects in the actor. Here the user selected the first
object (spherical superquadric).
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