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Summary

Covariance matrices play fundamental roles in myriad statistical procedures. When the obser-
vations in a dataset far outnumber the features, asymptotic theory and empirical evidence have
demonstrated the sample covariance matrix to be the optimal estimator of this parameter.
This assertion does not hold when the number of observations is commensurate with or smaller
than the number of features. Consequently, statisticians have derived many novel covariance
matrix estimators for the high-dimensional regime, often relying on additional assumptions
about the parameter's structural characteristics (e.g., sparsity). While these estimators have
greatly improved the ability to estimate covariance matrices in high-dimensional settings, ob-
jectively selecting the best estimator from among the many possible candidates remains a
largely unaddressed challenge. The cvCovEst package addresses this methodological gap
through its implementation of a cross-validated framework for covariance matrix estimator
selection. This data-adaptive procedure's selections are asymptotically optimal under minimal
assumptions — in fact, they are equivalent to the selections that would be made if given full
knowledge of the true data-generating processes (i.e., an oracle selector) (van der Laan &
Dudoit, 2003).

Statement of Need

When the number of observations in a dataset far exceeds the number of features, the es-
timator of choice for the covariance matrix is the sample covariance matrix. It is efficient
under minimal regularity assumptions on the data-generating distribution. In high-dimensional
regimes, however, its performance is unsatisfactory: the sample covariance matrix is highly
variable, and produces estimates with diverging condition numbers and over-dispersed eigen-
values (Johnstone, 2001). Analyses employing this demonstrably poor estimator may be
negatively impacted.

As high-dimensional data have become widespread, researchers have derived many novel co-
variance matrix estimators to remediate the sample covariance matrix's shortcomings. These
estimators come in many flavors, though most are constructed by regularizing the sample
covariance matrix. Comprehensive reviews are provided by Fan et al. (2016) and Pourahmadi
(2013), and these estimators are implemented across a diversity of R packages: CovTools
(Lee & You, 2019), CVTuningCov (Wang, 2014), and nlshrink (Ramprasad, 2016) to name
but a few.

This variety brings with it many challenges. Identifying an “optimal” estimator from among a
collection of candidates can prove a daunting task, one whose objectivity is often compromised
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by the data analyst's decisions. Though data-driven approaches for selecting an optimal
estimator from among estimators belonging to certain (limited) classes have been derived, the
question of selecting from a diverse collection of candidate procedures remains unaddressed.

cvCovEst Framework

The solution provided by cvCovEst is a general, cross-validation-based, estimator-agnostic
framework for covariance matrix estimator selection. The asymptotic optimality of selections
are guaranteed under a few non-restrictive assumptions by extending the seminal work of
van der Laan & Dudoit (2003), Dudoit & van der Laan (2005), and van der Vaart et al.
(2006) on data-adaptive estimator selection to high-dimensional covariance matrix estimation
(Boileau et al., 2021). Here, optimality is defined as choosing an estimator with an equivalent
risk difference to that which would have been selected were the underlying data-generating
distribution completely known.

The cvCovEst software package implements this framework for the R language and environ-
ment for statistical computing (R Core Team, 2021). Included is a collection of covariance
matrix estimators spanning the work of many researchers (Table 1). They may be employed
independently of the cross-validation procedure. cvCovEst also provides a variety of plotting
and summary functions. These diagnostic tools allow users to gauge the algorithm’s per-
formance, diagnose issues that might arise during estimation procedures, and build intuition
about the many estimators’ behaviors. Additionally, users have options to increase the cross-
validation method's computational efficiency via parallel computation. Parallelization relies
on the suite of future packages (Bengtsson, 2020) by way of the origami package (Coyle
& Hejazi, 2018).

Table 1: Covariance matrix estimators implemented as of version 1.0.0.

Estimator Implementation Description

Sample covariance matrix ~ sampleCovEst () The sample covariance matrix.

Hard thresholding (Bickel thresholdingEst () Applies a hard thresholding

& Levina, 2008b) operator to the entries of the
sample covariance matrix.

SCAD thresholding (Fan scadEst () Applies the SCAD thresholding

& Li, 2001; Rothman et operator to the entries of the

al., 2009) sample covariance matrix.

Adaptive LASSO adaptiveLassoEst () Applies the adaptive LASSO

(Rothman et al., 2009) thresholding operator to the
entries of the sample covariance
matrix.

Banding (Bickel & Levina, bandingEst() Replaces the sample covariance

2008a) matrix's off-diagonal bands by
zZeros.

Tapering (Cai et al., 2010) taperingEst() Tapers the sample covariance

matrix's off-diagonal bands,
eventually replacing them by zeros.

Optimal Linear Shrinkage linearShrinkLWEst () Asymptotically optimal shrinkage

(Ledoit & Wolf, 2004) of the sample covariance matrix
towards the identity.

Linear Shrinkage (Ledoit linearShrinkEst () Shrinkage of the sample

& Wolf, 2004) covariance matrix towards the

identity, but the shrinkage is
controlled by a hyperparameter.
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Estimator Implementation Description

Dense Linear Shrinkage denselinearShrinkEst(  Asymptotically optimal shrinkage

(Schafer & Strimmer, ) of the sample covariance matrix

2005) towards a dense matrix whose
diagonal elements are the mean of
the sample covariance matrix's
diagonal and whose off-diagonal
elements are the mean of the
sample covariance matrix's
off-diagonal elements.

Nonlinear Shrinkage nlShrinkLWEst () Analytical estimator for the

(Ledoit & Wolf, 2020)

POET (Fan et al., 2013) poetEst ()

nonlinear shrinkage of the sample
covariance matrix.

An estimator based on latent
variable estimation and
thresholding.

Robust POET (Fan et al.,  robustPoetEst () A robust (and more

2018) computationally taxing) take on
the POET estimator.

Examples

We briefly showcase cvCovEst's functionality through a toy example and an application to

single-cell transcriptomic data.

Toy Dataset Example

Multivariate normal data are simulated using a covariance matrix with a Toeplitz structure and
then fed to the cvCovEst function. A summary of the cross-validated estimation procedure

is provided via the plot method.

library (MASS)
library(cvCovEst)
set.seed(1584)

# function to generate a toeplitz matrix
toep_sim <- function(p, rho, alpha) {

times <- seq_len(p)

H <- abs(outer(times, times, "-")) + diag(p)

H <- H"-(1 + alpha) * rho
covmat <- H + diag(p) * (1 - rho)

sign_mat <- sapply(
times,
function(i) {
sapply (
times,
function(j) {
(-1)"(abs(i - j))
}
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)
}
)

return(covmat * sign_mat)

# generate a 100 x 100 covariance matrix
sim_covmat <- toep_sim(p = 100, rho = 0.6, alpha = 0.3)

# sample 75 observations from multivariate normal mean = 0, var = sim_covmat
sim_dat <- MASS::mvrnorm(n = 75, mu = rep(0, 100), Sigma = sim_covmat)

# run CV-selector
cv_cov_est_sim <- cvCovEst(
dat = sim_dat,
estimators = c(
linearShrinkEst, thresholdingEst, bandingEst, adaptivelassoEst,
sampleCovEst, taperingEst
),
estimator_params = list(
linearShrinkEst = list(alpha = seq(0.25, 0.75, 0.05)),
thresholdingEst = list(gamma = seq(0.25, 0.75, 0.05)),
bandingEst = list(k = seq(2L, 10L, 2L)),
adaptivelassoEst = list(lambda = c(0.1, 0.25, 0.5, 0.75, 1), n = seq(1, 5)),
taperingEst = list(k = seq(2L, 10L, 2L))
),
cv_scheme =
v_folds = 5

"v_fold",

# plot a summary of the results
plot(cv_cov_est_sim, data_orig = sim_dat)
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Figure 1: A summary of the cvCovEst procedure's results. In the top left corner, the selected
estimator's risk is plotted against its considered hyperparameters. In the top right, the eigenvalues
of the selected estimator's estimate are displayed. The bottom left plot presents the estimated
covariance matrix. Entries are colored based on their absolute values. Finally, the table in the bottom
right summarizes the performance of the best estimators from each class.

Single Cell Transcriptomic Data

Single-cell transcriptome sequencing (scRNA-seq) measures the gene expression profiles of
individual cells within a given population, permitting the identification of rare cell types and
the study of developmental trajectories. The datasets resulting from these experiments are
typically high-dimensional: expression data for hundreds or thousands of cells are collected
for tens of thousands of genes. A critical step in most analytic workflows is therefore that
of dimension reduction. In addition to facilitating visualization, this reduction is thought to
have a denoising effect. That is, the effects of uninteresting biological variation are typically
mitigated in these lower-dimensional embeddings.

A popular method for the dimensionality reduction of scRNA-seq is uniform manifold ap-
proximation and projection (UMAP) (Mclnnes et al., 2018), capable of capturing non-linear
relationships between features, applied to the dataset’s leading principal components. Since
these principal components (PCs) are derived from the sample covariance matrix, however,
they are likely to be poor estimates of the true PCs when the number of genes exceeds
the number of cells. Instead, the cvCovEst estimate could be used to compute the initial
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dimensionality reduction.

Indeed, we find that the two-dimensional UMAP embedding resulting from the cvCovEst-
based approach improves upon that of the standard PCA-based approach when applied to
a dataset of 285 mouse visual cortex’s cells’ 1,000 most variable genes (Tasic et al., 2016).
Fewer rare cells are misclustered, engendering a 47% improvement in average silhouette width.

For further discussion, see Boileau et al. (2021).

PCA — UMAP (Ave. Sil. Width: 0.32)
L
.

UMAP 2

L3

UMAP 2

cvCovEst — PCA — UMAP (Ave. Sil. Width: 0.45)

YT 4 o
NS *
"%
L
-
- ‘;_C‘

-10 5 0
UMAP 1

L4« Lsa ° L6a SstMyh8

Cell type L5 L5b Pvalb Tacr3

UMAP 1

Figure 2: A comparison of UMAP embeddings using the 20 leading PCs from traditional PCA and
from cvCovEst-based PCA as initializations.

Availability

A stable release of the cvCovEst package is freely-available via the Comprehensive R Archive
Network. Its development version can be found on GitHub. Documentation and examples are
contained in each version's manual pages, vignette, and pkgdown (Wickham & Hesselberth,
2020) website at https://philboileau.github.io/cvCovEst.
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