
Traja: A Python toolbox for animal trajectory analysis
Justin Shenk1, 2, Wolf Byttner3, Saranraj Nambusubramaniyan1, and
Alexander Zoeller4

1 VisioLab, Berlin, Germany 2 Radboud University, Nijmegen, Netherlands 3 Rapid Health, London,
England, United Kingdom 4 Independent researcher

DOI: 10.21105/joss.03202

Software
• Review
• Repository
• Archive

Editor: Juan Nunez-Iglesias
Reviewers:

• @a-paxton
• @abigailmcgovern

Submitted: 10 March 2021
Published: 18 July 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

There are generally four categories of trajectory data: mobility of people, mobility of trans-
portation vehicles, mobility of animals, and mobility of natural phenomena (Zheng, 2015).
Animal tracking is important for fields as diverse as ethology, optimal foraging theory, and
neuroscience. Mouse behavior, for example, is a widely studied in biomedical and brain re-
search in models of neurological disease such as stroke.1

Several tools exist which allow analyzing mouse locomotion. Tools such as Ethovision (Spink
et al., 2001) and DeepLabCut (Mathis et al., 2018) allow converting video data to pose
coordinates, which can further be analyzed by other open source tools. DLCAnalyzer2 provides
a collection of R scripts for analyzing positional data, in particular visualizing, classifying and
plotting movement. B-SOiD (Hsu & Yttri, 2020) allows unsupervised clustering of behaviors,
extracted from the pose coordinate outputs of DeepLabCut. SimBA (sgoldenlab et al., 2021)
provides several classifiers and tools for behavioral analysis in video streams in a Windows-
based graphical user interface (GUI) application.
These tools are primarily useful for video data, which is not available for the majority of animal
studies. For example, video monitoring of home cage mouse data is impractical today due to
housing space constraints. Researchers using Python working with non-visual animal tracking
data sources are not able to fully leverage these tools. Thus, a tool that supports modeling
in the language of state-of-the-art predictive models (Amirian et al., 2019; Chandra et al.,
2019; Liang et al., 2019), and which provides animal researchers with a high-level API for
multivariate time series feature extraction, modeling and visualization is needed.
Traja is a Python package for statistical analysis and computational modelling of trajectories.
Traja extends the familiar pandas (McKinney, 2010; team, 2020) methods by providing a
pandas accessor to the df.traja namespace upon import. The API for Traja was designed
to provide an object-oriented and user-friendly interface to common methods in analysis and
visualization of animal trajectories. Traja also interfaces well with relevant spatial analysis
packages in R (e.g., trajr (McLean & Volponi, 2018) and adehabitat (Calenge, 2006)), Shapely
(Gillies & others, 2007–), and MovingPandas (Graser, 2019) allowing rapid prototyping and
comparison of relevant methods in Python. A comprehensive source of documentation is
provided on the home page (http://traja.readthedocs.io).

Statement of Need

The data used in this project includes animal trajectory data provided by http://www.tecniplast.it,
manufacturer of laboratory animal equipment based in Varese, Italy, and Radboud University,

1The examples in this paper focus on animal motion, however it is useful for other domains.
2https://github.com/ETHZ-INS/DLCAnalyzer

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

1

https://doi.org/10.21105/joss.03202
https://github.com/openjournals/joss-reviews/issues/3202
https://github.com/traja-team/traja
https://doi.org/10.5281/zenodo.5069231
https://ilovesymposia.com
https://github.com/a-paxton
https://github.com/abigailmcgovern
http://creativecommons.org/licenses/by/4.0/
traja.readthedocs.io
Tecniplast%20S.p.A.
https://github.com/ETHZ-INS/DLCAnalyzer
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Nijmegen, Netherlands. Tecniplast provided the mouse locomotion data collected with their
Digital Ventilated Cages (DVC). The extracted coordinates of the mice requires further
analysis with external tools. Due to lack of access to equipment, mouse home cage data is
rather difficult to collect and analyze, thus few studies have been done on home cage data.
Furthermore, researchers who are interested in developing novel algorithms must implement
from scratch much of the computational and algorithmic infrastructure for analysis and
visualization. By packaging a library that is particularly useful for animal locomotion analysis,
future researchers can benefit from access to a high-level interface and clearly documented
methods for their work.
Other toolkits for animal behavioral analysis either rely on visual data (Mathis et al., 2018;
Sridhar, 2017) to estimate the pose of animals or are limited to the R programming language
(McLean & Volponi, 2018). Prototyping analytical approaches and exploratory data analysis is
furthered by access to a wide range of methods which existing libraries do not provide. Python
is the de facto language for machine learning and data science programming, thus a toolkit
in Python which provides methods for prototyping multivariate time series data analysis and
deep neural network modeling is needed.

Overview of the Library

Traja targets Python because of its popularity with data scientists. The library leverages
the powerful pandas library (McKinney, 2010), while adding methods specifically for trajec-
tory analysis. When importing Traja, the Traja namespace registers itself within the pandas
dataframe namespace via df.traja.
The software is structured into three parts. These provide functionality to transform, analyse
and visualize trajectories. Full details are available at https://traja.readthedocs.io/. The traj
ectory module provides analytical and preprocessing functionalities. The models subpackage
provides both traditional and neural network-based tools to determine trajectory properties.
The plotting module allows visualizing trajectories in various ways.
Data, e.g., x and y coordinates, are stored as one-dimensional labelled arrays as instances of
the pandas native Series class. Further, subclassing the pandas DataFrame allows providing
an API that mirrors the pandas API which is familiar to most data scientists, thus reducing
the barrier for entry while providing methods and properties specific to trajectories for rapid
prototyping. Traja depends on Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021) for
plotting and NumPy (Harris et al., 2020) for computation.

Trajectory Data Sources

Trajectory data as time series can be extracted from a wide range of sources, including video
processing tools as described above, GPS sensors for large animals or via home cage floor
sensors, as described in the section below. The methods presented here are implemented
for orthogonal coordinates (x, y) primarily to track animal centroids, however with some
modification they could be extended to work in 3-dimensions and with body part locations
as inputs. Traja is thus positioned at the end of the data scientist’s chain of tools with the
hope of supporting prototyping novel data processing approaches. A sample dataset of jaguar
movement (Morato et al., 2018) is provided in the traja.dataset subpackage.

Mouse Locomotion Data

The data samples presented here3 are in 2-dimensional location coordinates, reflecting the
mouse home cage (25x12.5 cm) dimensions. Analytical methods relevant to 2D rectilinear

3This dataset has been collected for other studies of our laboratory (Shenk et al., 2020).

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

2

https://traja.readthedocs.io/
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

analysis of highly constrained spatial coordinates are thus primarily considered.
High volume data like animal trajectories has an increased tendency to have missing data
due to data collection issues or noise. Filling in the missing data values, referred to as
data imputation, is achieved with a wide variety of statistical or learning-based methods. As
previously observed, data science projects typically require at least 95% of the time to be spent
on cleaning, pre-processing and managing the data (Bosch et al., 2021). Therefore, several
methods relevant to preprocessing animal data are demonstrated throughout the following
sections.

Spatial Trajectory

A spatial trajectory is a trace generated by a moving object in geographical space. Trajectories
are traditionally modelled as a sequence of spatial points like:

Tk = {Pk1, Pk2, ...}

where Pki(i ≥ 1) is a point in the trajectory.
Generating spatial trajectory data via a random walk is possible by sampling from a distribution
of angles and step sizes (Kareiva & Shigesada, 1983; McLean & Volponi, 2018). A correlated
random walk (Figure 1) is generated with traja.generate.

Figure 1: Generation of a random walk

Spatial Transformations

Transformation of trajectories can be useful for comparing trajectories from various geospatial
coordinates, data compression, or simply for visualization purposes.

Feature Scaling

Feature scaling is common practice for preprocessing data for machine learning (Grus, 2015)
and is essential for even application of methods to attributes. For example, a high dimensional

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

3

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

feature vector x ∈ Rn where some attributes are in (0, 100) and others are in (−1, 1) would
lead to biases in the treatment of certain attributes. To limit the dynamic range for multiple
data instances simultaneously, scaling is applied to a feature matrix X = {x1,x2, ...,xN} ∈
Rn×N , where n is the number of instances.
Min-Max Scaling To guarantee that the algorithm applies equally to all attributes, the
normalized feature matrix X̂ is rescaled into range (0, 1) such that
X̂ = X−Xmin

Xmax−Xmin
.

Standardization The result of standardization is that the features will be rescaled to have
the property of a standard normal distribution with µ = 0 and σ = 1 where µ is the mean
(average) of the data and σ is the standard deviation from the mean. Standard scores (also
known as z-scores are calculated such that
z = x−µ

σ .
Scaling Scaling a trajectory is implemented for factor f in scale where f ∈ R : f ∈
(−∞,+∞).

Rotation

Rotation of a 2D rectilinear trajectory is a coordinate transformation of orthonormal bases x
and y at angle θ (in radians) around the origin defined by

[
x′

y′

]
=

[
cosθ isinθ
sinθ cosθ

] [
x
y

]
with angle θ where θ ∈ R : θ ∈ [−180, 180].

Trip Grid

One strategy for compressing the representation of trajectories is binning the coordinates to
produce an image as shown in Figure 2.

Figure 2: Trip grid image generation from mouse trajectory.

Allowing computation on discrete variables rather than continuous ones has several advan-
tages stemming from the ability to store trajectories in a more memory efficient form.4 The
advantage is that computation is generally faster, more data can fit in memory in the case of
complex models, and item noise can be reduced.
Creation of an M ∗N grid allows mapping trajectory Tk onto uniform grid cells. Generalizing
the nomenclature of (Wang, 2017) to rectangular grids, Cmn(1 ≤ m ≤ M ; 1 ≤ n ≤ N)
denotes the cell in row m and column n of the grid. Each point Pki is assigned to a cell

4In this experiment, for example, data can be reduced from single-precision floating point (32 bits) to 8-bit
unsigned integer (uint8) format.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

4

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

C(m,n). The result is a two-dimensional image M ∗ N image Ik, where the value of pixel
Ik(m,n)(1 ≤ m,n ≤ M) indicates the relative number of points assigned to cell Cmn.
Partionining of spatial position into separate grid cells is often followed by generation of
hidden Markov models (Jeung et al., 2007) (see below) or visualization of heat maps (Figure
3).

Figure 3: Visualization of heat map from bins generated with df.trip_grid. Note regularly spaced
artifacts (bright yellow) in this sample due to a bias in the sensor data interpolation. This type of
noise can be minimized by thresholding or using a logarithmic scale, as shown above.

Smoothing

Smoothing a trajectory can also be achieved with Traja using Savitzky-Golay filtering with
smooth_sg (Savitzky & Golay, 1964).

Resampling and Rediscretizing

Trajectories can be resampled by time or rediscretized by an arbitrary step length. This can
be useful for aligning trajectories from various data sources and sampling rates or reducing
the number of data points to improve computational efficiency. Care must be taken to select
a time interval which maintains information on the significant behavior. If the minimal time
interval observed is selected for the points, calculations will be computationally intractable for
some systems. If too large of an interval is selected, we will fail to capture changes relevant
to the target behavior in the data.
Resampling by time is performed with resample_time (Figure 4). Rediscretizing by step
length is performed with rediscretize.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

5

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Figure 4: Resampling trajectories by different time scales is performed with resample_time.

For example, the Fortasyn dataset (Shenk et al., 2020) demonstrated in this paper was sampled
at 4 Hz and converted to single-precision floating point data. Pandas dataframes store this
data in 4 bytes, thus there are approximately 4.15 MB5 bytes required to store data for x and
y dimensions plus an index reference for a single day. In the case of (Shenk et al., 2020), 24
mice were observed over 35 days. This translates to 3.4 GB (109) of storage capacity for the
uncompressed datasets prior to feature engineering. Thus resampling can be a useful way to
reduce the memory footprint for memory constrained processes that have to fit into a standard
laptop with 8 GB memory space. A demonstration of how reduction in precision for trajectory
data analysis is provided in Figure 4, as applied to a sample from the Fortasyn experiment
(Shenk et al., 2020). Broad effects such as cage crossings, for example, can still be identified
while downsampling data to a lower frequency, such as 0.1 Hz, reducing the memory footprint
by a factor of 40 (4 Hz/0.1 Hz) and providing significant speedups for processing.

Movement Analysis

Traja includes traditional as well as advanced methods for trajectory analysis.

Distance traveled

Distance traveled is a common metric in animal studies - it accounts for the total distance
covered by the animal within a given time interval. The distance traveled is typically quanti-
fied by summing the square straight-line displacement between discretely sampled trajectories
(Rowcliffe et al., 2012; Solla et al., 1999). Alternative distance metrics for the case of animal
tracking are discussed in (Noonan et al., 2019).
Let p(t) = [px(t), py(t)] be a 2 × 1 vector of coordinates on the ground representing the
position of the animal at time t. Then, the distance traveled within the time interval t1 and
t2 can be computed as a sum of step-wise Euclidean distances

p(t1, t2) = Σt2
t=t1+1d(t),

54 x 4 Hz x 60 seconds x 60 minutes x 24 hours x 3 features (x, y, and time)

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

6

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

where
d(t) =

√
(px(t)− px(t− 1))2 + (py(t)− py(t− 1))2

is the Euclidean distance between two positions in adjacent time samples.

Figure 5: Velocity histogram from one day of mouse activity.

Speed

Speed or velocity is the first derivative of centroids with respect to time. Peak velocity in a
home cage environment is perhaps less interesting than a distribution of velocity observations,
as in Figure 5. Additionally, noise can be eliminated from velocity calculations by using a
minimal distance moved threshold, as demonstrated in (Shenk et al., 2020). This allows
identifying broad-scale behaviors such as cage crossings.

Turn Angles

Turn angles are the angle between the movement vectors of two consecutive samples. They
can be calculated with calc_turn_angles.

Laterality

Laterality is the preference for left or right turning and a laterality index is defined as:

LI =
RT

LT +RT

where RT is the number of right turns observed and LT is the number of left turns observed.
Turns are counted within a left turn angle ∈ (θ, 90) and right turn angle ∈ (−θ,−90). A
turn is considered to have a minimal step length.

Periodicity

Periodic behaviors are a consequence of the circadian rhythm as well as observing expression
of underlying cognitive traits. Some basic implementations of periodic analysis of mouse cage
data are presented.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

7

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Autocorrelation

Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of the
decay. Basically, it is similarity of observations as a function of the time lag between them.
An example is shown in Figure 6.

Figure 6: Autocorrelation of the y-dimension reveals daily (1440 minutes) periodic behavior

Power Spectrum

Power spectrum of a time series signal can be estimated (Figure 7). This is useful for analyzing
signals, for example, the influence of neuromotor noise on delays in hand movement (Van Galen
et al., 1990).

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

8

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Figure 7: Power Spectral Density. One day of activity reveals fairly smooth power spectral density.

Algorithms and Statistical Models

Machine Learning for Time Series Data

Machine learning methods enable researchers to solve tasks computationally without explicit
instructions by detecting patterns or relying on inference. Thus they are particularly relevant
for data exploration of high volume datasets such as spatial trajectories and other multivariate
time series.

Principal Component Analysis

Principal Component Analysis projects the data into a linear subspace with a minimum loss
of information by multiplying the data by the eigenvectors of the covariance matrix.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

9

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Figure 8: PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned into 8x8
grids before applying PCA.

This requires converting the trajectory to a trip grid (see Figure [2(#fig:tripgridalgo){reference-
type=“ref” reference=“fig:tripgridalgo”}]) and performing PCA on the grid in 2D (Figure 8)
or 3D (Figure 9). Structure in the data is visible if light and dark time periods are compared.

Figure 9: 3D PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned into
8x8 grids before applying PCA.

Clustering

Clustering of trajectories is an extensive topic with applications in geospatial data, vehicle and
pedestrian classification, as well as molecular identification. K-means clustering is an iterative
unsupervised learning method that assigns a label to data points based on a distance function
(Bishop, 2006) (Figure 10).

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

10

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Figure 10: K-means clustering on the results of the PCA shown above reveals a high accuracy of
classification, with a few errors. Cluster labels are generated by the model.

Hierarchical Agglomerative Clustering

Clustering spatial trajectories has broad applications for behavioral research, including unsu-
pervised phenotyping (Huang et al., 2020). For mice, hierarchical agglomerative clustering
can also be used to identify similarities between groups, for example periodic activity and
location visit frequency (Bak et al., 2009).

Gaussian Processes

Gaussian Processes is a non-parametric method which can be used to model spatial trajectories.
This method is not currently implemented in Traja and is thus outside the scope of the current
paper, however the interested reader is directed to the excellent text on Gaussian processes by
Rasmussen and Williams (Rasmussen & Williams, 2006) for a complete reference and (Cox
et al., 2012) for an application to spatial trajectories.

Other Methods

Fractal Methods

Fractal (i.e. multiscale) methods are useful for analyzing transitions and clustering in trajec-
tories. For example, search trajectories such as eye movement, hand-eye coordination, and
foraging can be analyzed by quantifying the spatial distribution or nesting of temporal point
processes using spatial Allen Factor analysis (Huette et al., 2013; Kerster et al., 2016).
Recurrence plots and derivative recurrence factor analysis can be applied to trajectories to
identify multiscale temporal processes to study transition or nonlinear parameters in a system,
such as postural fluctuation (Ross et al., 2016) and synchrony (Shockley et al., 2003) in
humans and to movement of animals such as ants (Neves et al., 2017) and bees (Ayers et al.,
2015). These methods are not yet implemented in Traja, but are planned for a future release.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

11

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Graph Models

A graph is a pair G = (V,E) comprising a set of vertices and a set of connecting edges. A
probabilistic graphical model of a spatial occupancy grid can be used to identify probabilities
of state transitions between nodes. A basic example is given with hidden Markov models
below.

Figure 11: Transition matrix. Rows and columns are flattened histogram of a grid 20 cells high and
10 cells wide. Spatially adjacent grid cells are visible at a spacing of -11, -10, -9, 1, 10, and 11 cells
from the diagonal. The intensity of pixels in the diagonal represents relative likelihood to stay in the
same position.

Hidden Markov Models

Transition probabilities are most commonly modelled with Hidden Markov Models (HMM)
because of their ability to capture spatial and temporal dependencies. A recent introduction
to these methods is available provided by (Patterson et al., 2017). HMMs have successfully
been used to analyze movement of caribou (Franke et al., 2004), fruit flies (Holzmann et al.,
2006), and tuna (Patterson et al., 2018), among others. Trajectories are typically modelled
as bivariate time series consisting of step length and turn angle, regularly spaced in time.
Traja implements the rectangular spatial grid version of HMM with transitions.
The probability of transition from each cell to another cell is stored as a probability within the
transition matrix. This can visualized as a heatmap and plotted with plot_transition_ma
trix (Figure 11).

Convex Hull

The convex hull of a subtrajectory is the set X of points in the Euclidean plane that is the
smallest convex set to include X. For computational efficiency, a geometric k-simplex can
be plotted covering the convex hull by converting to a Shapely object and using Shapely’s
convex_hull method.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

12

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Recurrent Neural Networks

In recent years, deep learning has transformed the field of machine learning. For example,
the current state of the art models for a wide range of tasks, including computer vision,
speech to text, and pedestrian trajectory prediction, are achieved with deep neural networks.
Neural networks are essentially sequences of matrix operations and elementwise function ap-
plication based on a collection of computing units known as nodes or neurons. These units
perform operations, such as matrix multiplication on input features of a dataset, followed by
backpropagation of errors, to identify parameters useful for approximating a function.

Figure 12: Neural network architectures available in Traja

Recurrent Neural Networks (RNNs) are a special type of Neural Networks that use a state
S(ti−1) from the previous timestep ti−1 alongside X(ti) as input. They output a prediction
Y (ti) and a new state S(ti) at every step. Utilising previous states makes RNNs particularly
good at analyzing time series like trajectories, since they can process arbitrarily long inputs.
They remember information from previous time steps X(ti−k), ..., X(ti−1) when processing
the current time step X(ti).
Trajectory prediction lets researchers forecast the location and trajectory of animals (Wijeyaku-
lasuriya et al., 2020). Where this technique works well, it is also a sign that the trajectory
is highly regular and, fundamentally, follows certain rules and patterns. When tracking an
animal live, it would also let researchers predict when it will arrive at a particular location, or
where it will go, letting them rig cameras and other equipment ahead of time.
A particularly interesting type of RNN is the Long Short Term Memory (LSTM) architecture.
Their layers use stacks of units, each with two hidden variables - one that quickly discards
old states and one that slowly does so - to consider relevant information from previous time
steps. They can thus look at a trajectory and determine a property of the animal – whether it
is sick or injured, say – something that is time-consuming and difficult to do by hand. They
can also predict future time steps based on past ones, letting researchers estimate where the
animal will go next. LSTMs can also classify trajectories, determining whether a trajectory
comes from an animal belonging in a specific category. This lets researchers determine how a
controlled or semi-controlled variable (e.g., pregnancy) changes the movement pattern of an
animal.
Traja implements neural networks by extending the widely used open source machine learning
library PyTorch (Paszke et al., 2019), primarily developed by Facebook AI Research Group.
Traja allows framework-agnostic modeling through data loaders designed for time series. In
addition, the Traja package comes with several predefined model architectures which can be
configured according to the user’s requirements.

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

13

https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Because RNNs work with time series, the trajectories require special handling. The traja.d
ataset.MultiModalDataLoader efficiently groups subsequent samples and into series and
splits these series into training and test data. It represents a Python iterable over the dataset
and extends the PyTorch DataLoader class, with support for

• random, weighted sampling,
• data scaling,
• data shuffling,
• train/validation/test split.

MultiModalDataLoader accepts several important configuration parameters and allows
batched sampling of the data. The two constructor arguments n_past and n_future specify
the number of samples that the network will be shown and the number that the network will
have to guess, respectively. batch_size is generally in the dozens and is used to regularise
the network.
The RNNs also need to be trained - this is done by the high-level Trainer class below.
It performs nonlinear optimisation with a Stochastic Gradient Descent-like algorithm. The
Trainer class by default implements the Huber loss function (Huber, 1964), also known as
smooth L1 loss, which is a loss function commonly used in robust regression:

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,

δ(|a| − 1
2δ), otherwise.

In comparison to mean-squared error loss, Huber loss is less sensitive to outliers in data:
it is quadratic for small values of a, and linear for large values. It extends the PyTorch
SmoothL1Loss class, where the d parameter is set to 1.6 A common optimization algorithm
is ADAM and is Traja’s default, but several others are provided as well. Although training
with only a CPU is possible, a GPU can provide a 40− 100x speedup (Arpteg et al., 2018).

Recurrent Autoencoder Networks

Traja can also train autoencoders to either predict the future position of a track or classify the
track into a number of categories. Autoencoders embed the time series into a time-invariant
latent space, allowing representation of each trajectory or sub-trajectory as a vector. A class
of well-separated trajectories would then be restricted to a region of the latent space. The
technique is similar to Word2vec (Mikolov et al., 2013), where words are converted to a
100+ dimensional vector. In this approach, forecasting and classification are both preceded
by training the data in an autoencoder, which learns an efficient representation of the data
for further computation of the target function.
Traja allows training a classifier that works directly on the latent space output - since each
class of trajectories converges to a distinct region in the latent space, this technique is often
superior to classifying the trajectory itself. Traja trains classifiers for both Autoencoder-style
and Variational Autoencoder-style RNNs. When investigating whether animal behavior has
changed, or whether two experimental categories of animals behave differently, this unstruc-
tured data mining can suggest fruitful avenues for investigation.

References

Amirian, J., Hayet, J.-B., & Pettre, J. (2019). Social Ways: Learning Multi-Modal Distribu-
tions of Pedestrian Trajectories with GANs. arXiv:1904.09507 [cs]. https://doi.org/10.

6https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

14

https://doi.org/10.1109/cvprw.2019.00359
https://doi.org/10.1109/cvprw.2019.00359
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

1109/cvprw.2019.00359
Arpteg, A., Brinne, B., Crnkovic-Friis, L., & Bosch, J. (2018). Software engineering challenges

of deep learning. 2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 50–59. https://doi.org/10.1109/seaa.2018.00018

Ayers, C., Armsworth, P., & Brosi, B. (2015). Determinism as a statistical metric for eco-
logically important recurrent behaviors with trapline foraging as a case study. Behavioral
Ecology and Sociobiology, 69. https://doi.org/10.1007/s00265-015-1948-3

Bak, P., Mansmann, F., Janetzko, H., & Keim, D. (2009). Spatiotemporal analysis of sensor
logs using growth ring maps. IEEE Transactions on Visualization and Computer Graphics,
15, 913–920. https://doi.org/10.1109/TVCG.2009.182

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer-Verlag. ISBN: 978-
0-387-31073-2

Bosch, J., Olsson, H. H., & Crnkovic, I. (2021). Engineering AI Systems: A Research Agenda
[Chapter]. In Artificial Intelligence Paradigms for Smart Cyber-Physical Systems. https:
//doi.org/10.4018/978-1-7998-5101-1.ch001

Calenge, C. (2006). The package adehabitat for the r software: Tool for the analysis of space
and habitat use by animals. Ecological Modelling, 197, 1035.

Chandra, R., Bhattacharya, U., Bera, A., & Manocha, D. (2019). TraPHic: Trajectory Predic-
tion in Dense and Heterogeneous Traffic Using Weighted Interactions. arXiv:1812.04767
[cs]. https://doi.org/10.1109/cvpr.2019.00868

Cox, G. E., Kachergis, G., & Shiffrin, R. M. (2012). Gaussian Process Regression for Trajectory
Analysis. 6.

Franke, A., Caelli, T., & Hudson, R. J. (2004). Analysis of movements and behavior of caribou
(Rangifer tarandus) using hidden Markov models. Ecological Modelling, 173(2), 259–270.
https://doi.org/10.1016/j.ecolmodel.2003.06.004

Gillies, S., & others. (2007–). Shapely: Manipulation and analysis of geometric objects.
toblerity.org. https://github.com/Toblerity/Shapely

Gillies, S., & others. (2007–). Shapely: Manipulation and analysis of geometric objects.
toblerity.org. https://github.com/Toblerity/Shapely

Graser, A. (2019). MovingPandas: Efficient Structures for Movement Data in Python.
GI_Forum 2019, Volume 7, 54–68. https://doi.org/10.1553/giscience2019_01_s54

Grus, J. (2015). Data Science from Scratch: First Principles with Python. O’Reilly.
ISBN: 978-1-4919-0142-7

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Holzmann, H., Munk, A., Suster, M., & Zucchini, W. (2006). Hidden Markov models for
circular and linear-circular time series. Environmental and Ecological Statistics, 13(3),
325–347. https://doi.org/10.1007/s10651-006-0015-7

Hsu, A. I., & Yttri, E. A. (2020). B-SOiD: An open source unsupervised algorithm for discovery
of spontaneous behaviors. bioRxiv. https://doi.org/10.1101/770271

Huang, K., Han, Y., Chen, K., Pan, H., Yi, W., Li, X., Liu, S., Wei, P., & Wang, L. (2020).
Mapping Mouse Behavior with an Unsupervised Spatio-temporal Sequence Decomposition
Framework. bioRxiv. https://doi.org/10.1101/2020.09.14.295808

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

15

https://doi.org/10.1109/seaa.2018.00018
https://doi.org/10.1007/s00265-015-1948-3
https://doi.org/10.1109/TVCG.2009.182
https://worldcat.org/isbn/978-0-387-31073-2
https://worldcat.org/isbn/978-0-387-31073-2
https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://doi.org/10.1109/cvpr.2019.00868
https://doi.org/10.1016/j.ecolmodel.2003.06.004
https://github.com/Toblerity/Shapely
https://github.com/Toblerity/Shapely
https://doi.org/10.1553/giscience2019_01_s54
https://worldcat.org/isbn/978-1-4919-0142-7
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s10651-006-0015-7
https://doi.org/10.1101/770271
https://doi.org/10.1101/2020.09.14.295808
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Huber, P. J. (1964). Robust Estimation of a Location Parameter. Annals of Mathematical
Statistics, 35(1), 73–101. https://doi.org/10.1214/aoms/1177703732

Huette, S., Kello, C., Rhodes, T., & Spivey, M. (2013). Drawing from Memory: Hand-Eye
Coordination at Multiple Scales. PloS One, 8, e58464. https://doi.org/10.1371/journal.
pone.0058464

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Jeung, H., Shen, H. T., & Zhou, X. (2007). Mining Trajectory Patterns Using Hidden Markov
Models. In I. Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data Warehousing and Knowledge
Discovery (Vol. 4654, pp. 470–480). Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-74553-2_44

Kareiva, P. M., & Shigesada, N. (1983). Analyzing insect movement as a correlated random
walk. Oecologia, 56(2-3), 234–238. https://doi.org/10.1007/BF00379695

Kerster, B. E., Rhodes, T., & Kello, C. T. (2016). Spatial memory in foraging games.
Cognition, 148, 85–96. https://doi.org/10.1016/j.cognition.2015.12.015

Liang, J., Jiang, L., Niebles, J. C., Hauptmann, A., & Fei-Fei, L. (2019). Peeking into the
Future: Predicting Future Person Activities and Locations in Videos. arXiv:1902.03748
[cs]. https://doi.org/10.1109/cvprw.2019.00358

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge,
M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts with deep
learning. Nature Neuroscience. https://doi.org/10.1038/s41593-018-0209-y

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

McLean, D. J., & Volponi, M. A. S. (2018). Trajr: An R package for characterisation of
animal trajectories. Ethology, 124(6), 440–448. https://doi.org/10.1111/eth.12739

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representa-
tions of words and phrases and their compositionality. http://arxiv.org/abs/1310.4546

Morato, R. G., Thompson, J. J., Paviolo, A., Torre, J. A. de L., Lima, F., McBride, R.
T., Paula, R. C., Cullen, L., Silveira, L., Kantek, D. L. Z., Ramalho, E. E., Maranhão,
L., Haberfeld, M., Sana, D. A., Medellin, R. A., Carrillo, E., Montalvo, V., Monroy-
Vilchis, O., Cruz, P., … Ribeiro, M. C. (2018). Jaguar movement database: A GPS-based
movement dataset of an apex predator in the Neotropics. Ecology, 99(7), 1691–1691.
https://doi.org/10.1002/ecy.2379

Neves, F. M., Viana, R. L., & Pie, M. R. (2017). Recurrence analysis of ant activity patterns.
PLOS ONE, 12(10), 1–15. https://doi.org/10.1371/journal.pone.0185968

Noonan, M. J., Fleming, C. H., Akre, T. S., Drescher-Lehman, J., Gurarie, E., Harrison, A.-L.,
Kays, R., & Calabrese, J. M. (2019). Scale-insensitive estimation of speed and distance
traveled from animal tracking data. Movement Ecology, 7(1), 35. https://doi.org/10.
1186/s40462-019-0177-1

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

16

https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1371/journal.pone.0058464
https://doi.org/10.1371/journal.pone.0058464
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-540-74553-2_44
https://doi.org/10.1007/978-3-540-74553-2_44
https://doi.org/10.1007/BF00379695
https://doi.org/10.1016/j.cognition.2015.12.015
https://doi.org/10.1109/cvprw.2019.00358
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1111/eth.12739
http://arxiv.org/abs/1310.4546
https://doi.org/10.1002/ecy.2379
https://doi.org/10.1371/journal.pone.0185968
https://doi.org/10.1186/s40462-019-0177-1
https://doi.org/10.1186/s40462-019-0177-1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Patterson, T. A., Eveson, J. P., Hartog, J. R., Evans, K., Cooper, S., Lansdell, M., Hobday,
A. J., & Davies, C. R. (2018). Migration dynamics of juvenile southern bluefin tuna.
Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32949-3

Patterson, T. A., Eveson, J. P., Hartog, J. R., Evans, K., Cooper, S., Lansdell, M., Hobday,
A. J., & Davies, C. R. (2018). Migration dynamics of juvenile southern bluefin tuna.
Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32949-3

Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., & King, R. (2017).
Statistical modelling of individual animal movement: An overview of key methods and a
discussion of practical challenges. AStA Advances in Statistical Analysis, 101(4), 399–438.
https://doi.org/10.1007/s10182-017-0302-7

Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., & King, R. (2017).
Statistical modelling of individual animal movement: An overview of key methods and a
discussion of practical challenges. AStA Advances in Statistical Analysis, 101(4), 399–438.
https://doi.org/10.1007/s10182-017-0302-7

Rasmussen, CE., & Williams, CKI. (2006). Gaussian Processes for Machine Learning. Biolo-
gische Kybernetik.

Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., & Balasubramaniam, R. (2016).
Influence of musical groove on postural sway. Journal of Experimental Psychology: Human
Perception and Performance, 42(3), 308–319. https://doi.org/10.1037/xhp0000198

Rowcliffe, J. M., Carbone, C., Kays, R., Kranstauber, B., & Jansen, P. A. (2012). Bias in
estimating animal travel distance: The effect of sampling frequency. Methods in Ecology
and Evolution, 3(4), 653–662. https://doi.org/10.1111/j.2041-210X.2012.00197.x

Savitzky, Abraham., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https:
//doi.org/10.1021/ac60214a047

sgoldenlab, Choong, J. J., Nilsson, S., Islam, A., & sophihwang26. (2021). Sgoldenlab/simba:
SimBA: Release v1.3 (Version v1.3) [Computer software]. Zenodo. https://doi.org/10.
5281/zenodo.4521178

Shenk, J., Lohkamp, K. J., Wiesmann, M., & Kiliaan, A. J. (2020). Automated Analysis of
Stroke Mouse Trajectory Data With Traja. Frontiers in Neuroscience, 14. https://doi.
org/10.3389/fnins.2020.00518

Shockley, K., Santana, M.-V., & Fowler, C. (2003). Mutual interpersonal postural constraints
are involved in cooperative conversation. Journal of Experimental Psychology. Human
Perception and Performance, 29, 326–332. https://doi.org/10.1037/0096-1523.29.2.326

Solla, S. R. D., Bonduriansky, R., & Brooks, R. J. (1999). Eliminating autocorrelation reduces
biological relevance of home range estimates. Journal of Animal Ecology, 68(2), 221–234.
https://doi.org/10.1046/j.1365-2656.1999.00279.x

Spink, A. J., Tegelenbosch, R. A. J., Buma, M. O. S., & Noldus, L. P. J. J. (2001). The Etho-
Vision video tracking system—A tool for behavioral phenotyping of transgenic mice. Phys-
iology & Behavior, 73(5), 731–744. https://doi.org/10.1016/S0031-9384(01)00530-3

Sridhar, V. H. (2017). Vivekhsridhar/tracktor: tracktor (tracktor) [Computer software]. Zen-
odo. https://doi.org/10.5281/zenodo.1134016

team, T. pandas development. (2020). Pandas-dev/pandas: pandas (latest) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.3509134

Van Galen, G. P., Van Doorn, R. R., & Schomaker, L. R. (1990). Effects of motor pro-
gramming on the power spectral density function of finger and wrist movements. Jour-
nal of Experimental Psychology: Human Perception and Performance, 16(4), 755–765.
https://doi.org/10.1037/0096-1523.16.4.755

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

17

https://doi.org/10.1038/s41598-018-32949-3
https://doi.org/10.1038/s41598-018-32949-3
https://doi.org/10.1007/s10182-017-0302-7
https://doi.org/10.1007/s10182-017-0302-7
https://doi.org/10.1037/xhp0000198
https://doi.org/10.1111/j.2041-210X.2012.00197.x
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.5281/zenodo.4521178
https://doi.org/10.5281/zenodo.4521178
https://doi.org/10.3389/fnins.2020.00518
https://doi.org/10.3389/fnins.2020.00518
https://doi.org/10.1037/0096-1523.29.2.326
https://doi.org/10.1046/j.1365-2656.1999.00279.x
https://doi.org/10.1016/S0031-9384(01)00530-3
https://doi.org/10.5281/zenodo.1134016
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1037/0096-1523.16.4.755
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

Wang, X. (2017). Modeling Trajectory as Image: Convolutional Neural Networks
for Multi-scale Taxi Trajectory Prediction. https://www.academia.edu/34767293/
Modeling_Trajectory_as_Image_Convolutional_Neural_Networks_for_Multi-scale_
Taxi_Trajectory_Prediction

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Wijeyakulasuriya, D. A., Eisenhauer, E. W., Shaby, B. A., & Hanks, E. M. (2020). Machine
learning for modeling animal movement. PLOS ONE, 15(7), 1–30. https://doi.org/10.
1371/journal.pone.0235750

Zheng, Y. (2015). Trajectory Data Mining: An Overview. ACM Transaction on Intelli-
gent Systems and Technology. https://www.microsoft.com/en-us/research/publication/
trajectory-data-mining-an-overview/

Shenk et al., (2021). Traja: A Python toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202. https:
//doi.org/10.21105/joss.03202

18

https://www.academia.edu/34767293/Modeling_Trajectory_as_Image_Convolutional_Neural_Networks_for_Multi-scale_Taxi_Trajectory_Prediction
https://www.academia.edu/34767293/Modeling_Trajectory_as_Image_Convolutional_Neural_Networks_for_Multi-scale_Taxi_Trajectory_Prediction
https://www.academia.edu/34767293/Modeling_Trajectory_as_Image_Convolutional_Neural_Networks_for_Multi-scale_Taxi_Trajectory_Prediction
https://doi.org/10.21105/joss.03021
https://doi.org/10.1371/journal.pone.0235750
https://doi.org/10.1371/journal.pone.0235750
https://www.microsoft.com/en-us/research/publication/trajectory-data-mining-an-overview/
https://www.microsoft.com/en-us/research/publication/trajectory-data-mining-an-overview/
https://doi.org/10.21105/joss.03202
https://doi.org/10.21105/joss.03202

	Summary
	Statement of Need
	Overview of the Library
	Trajectory Data Sources

	Mouse Locomotion Data
	Spatial Trajectory
	Spatial Transformations
	Feature Scaling
	Rotation
	Trip Grid
	Smoothing

	Resampling and Rediscretizing
	Movement Analysis
	Distance traveled
	Speed
	Turn Angles
	Laterality

	Periodicity
	Autocorrelation
	Power Spectrum

	Algorithms and Statistical Models
	Machine Learning for Time Series Data
	Principal Component Analysis
	Clustering
	Hierarchical Agglomerative Clustering
	Gaussian Processes

	Other Methods
	Fractal Methods
	Graph Models
	Hidden Markov Models
	Convex Hull
	Recurrent Neural Networks
	Recurrent Autoencoder Networks

	References

