
AgentPy: A package for agent-based modeling in Python
Joël Foramitti1, 2

1 Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, Spain 2
Institute for Environmental Studies, Vrije Universiteit Amsterdam, The Netherlands

DOI: 10.21105/joss.03065

Software
• Review
• Repository
• Archive

Editor: Sebastian Benthall
Reviewers:

• @jamesdamillington
• @martibosch

Submitted: 16 January 2021
Published: 22 June 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Introduction
Agent-based models allow for computer simulations based on the autonomous behavior of
heterogeneous agents. They are used to generate and understand the emergent dynamics of
complex systems, with applications in fields like ecology (DeAngelis & Diaz, 2019), cognitive
sciences (Madsen et al., 2019), management (North & Macal, 2007), policy analysis (Castro
et al., 2020), economics (Arthur, 2021; Farmer & Foley, 2009), and sociology (Bianchi &
Squazzoni, 2015).
AgentPy is an open-source library for the development and analysis of agent-based models. It
aims to provide an intuitive syntax for the creation of models together with advanced tools for
scientific applications. The framework is written in Python 3, and optimized for interactive
computing with IPython and Jupyter. A reference of all features as well as a model library
with tutorials and examples can be found in the documentation.1

Statement of Need
There are numerous modeling and simulation tools for agent-based models, each with their own
particular focus and style (Abar et al., 2017). Notable examples are NetLogo (Wilensky, 1999),
which is written in Scala/Java and has become the most established tool in the field; and
Mesa (Masad & Kazil, 2015), a more recent framework that has popularized the development
of agent-based models in Python.
AgentPy’s main distinguishing feature is that it integrates the many different tasks of agent-
based modeling within a single environment for interactive computing. This includes the
creation of custom agent and model types, interactive simulations (Figure 1) similar to the
traditional NetLogo interface, numeric experiments over multiple runs, and the subsequent
data analysis of the output. All of these can be performed within a Jupyter Notebook.
The software is further designed for scientific applications, and includes tools for parame-
ter sampling (similar to NetLogo’s BehaviorSpace), Monte Carlo experiments, random num-
ber generation, parallel computing, and sensitivity analysis. Beyond these built-in features,
AgentPy is also designed for compatibility with established Python libraries like EMA Work-
bench, NetworkX, NumPy, pandas, SALib, SciPy, and seaborn.

1Link to the AgentPy documentation: https://agentpy.readthedocs.io

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software, 6(62), 3065. https:
//doi.org/10.21105/joss.03065

1

https://doi.org/10.21105/joss.03065
https://github.com/openjournals/joss-reviews/issues/3065
https://github.com/JoelForamitti/agentpy
https://doi.org/10.5281/zenodo.4946508
https://sbenthall.net 
https://github.com/jamesdamillington
https://github.com/martibosch
http://creativecommons.org/licenses/by/4.0/
http://ipython.org/
https://jupyter.org/
https://agentpy.readthedocs.io/
https://ccl.northwestern.edu/netlogo/
https://mesa.readthedocs.io/
https://jupyter.org/
https://emaworkbench.readthedocs.io/
https://emaworkbench.readthedocs.io/
https://networkx.org/
https://numpy.org/
https://pandas.pydata.org/
https://salib.readthedocs.io/
https://www.scipy.org/
https://seaborn.pydata.org/
https://agentpy.readthedocs.io
https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.03065


Figure 1: An interactive simulation of Schelling’s segregation model in a Jupyter Notebook.

Basic structure
The AgentPy framework follows a nested structure that is illustrated in Figure 2. The basic
building blocks are the agents, which can be placed within (multiple) environments with
different topologies such as a network, a spatial grid, or a continuous space. Models are used
to initiate these objects, perform a simulation, and record data. Experiments can run a model
over multiple iterations and parameter combinations. The resulting output data can then be
saved and re-arranged for analysis and visualization.

Figure 2: Nested structure of the AgentPy framework.

Model example
The following code shows an example of a simple model that explores the distribution of
wealth under a randomly trading population of agents. The original version of this model was

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software, 6(62), 3065. https:
//doi.org/10.21105/joss.03065

2

https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.03065


written in Mesa, allowing for a comparison of the syntax between the two frameworks.2 To
start, we import the AgentPy library as follows:
import agentpy as ap

We then define a new type of Agent. The method setup will be called automatically at
the agent’s creation. Each agent starts with one unit of wealth. wealth_transfer will be
called by the model during each time-step. When called, the agent randomly selects a trading
partner and hands them one unit of their wealth, given that they have one to spare.
class WealthAgent(ap.Agent):

def setup(self):
self.wealth = 1

def wealth_transfer(self):
if self.wealth > 0:

partner = self.model.agents.random()
partner.wealth += 1
self.wealth -= 1

Next, we define a Model. The method setup is called at the beginning the simulation,
step is called during each time-step, and end is called after the simulation has finished. An
AgentList is used to create a set of agents that can then be accessed as a group. The
attribute p is used to access the model’s parameters. And the method record is used to store
data for later analysis.
class WealthModel(ap.Model):

def setup(self):
self.agents = ap.AgentList(self, self.p.n, WealthAgent)

def step(self):
self.agents.wealth_transfer()

def end(self):
self.agents.record('wealth')

To run a simulation, a new instance of the model is created with a dictionary of parameters.
While the parameter n is used in the model’s setup, the parameter steps automatically defines
the maximum number of time-steps. Alternatively, the simulation could also be stopped with
Model.stop. To perform the actual simulation, one can use Model.run.
parameters = {'n': 100, 'steps': 100}
model = MoneyModel(parameters)
results = model.run()

Parameters can also be defined as ranges and used to generate a Sample. This sample can
then be used to initiate an Experiment that can repeatedly run the model over multiple
parameter combinations and iterations. In the following example, the parameter n is varied
from 1 to 100 and the simulation is repeated 10 times for each value of n.
parameters = {'n': ap.IntRange(1, 100), 'steps': 100}
sample = ap.Sample(parameters, n=10)
exp = ap.Experiment(MoneyModel, sample, iterations=10, record=True)
results = exp.run()

2For a direct comparison, see: https://agentpy.readthedocs.io/en/stable/comparison.html

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software, 6(62), 3065. https:
//doi.org/10.21105/joss.03065

3

https://agentpy.readthedocs.io/en/stable/reference_agents.html
https://agentpy.readthedocs.io/en/stable/reference_agents.html#agentpy.Agent.setup
https://agentpy.readthedocs.io/en/stable/reference_model.html
https://agentpy.readthedocs.io/en/stable/reference_model.html#agentpy.Model.setup
https://agentpy.readthedocs.io/en/stable/reference_model.html#agentpy.Model.step
https://agentpy.readthedocs.io/en/stable/reference_model.html#agentpy.Model.end
https://agentpy.readthedocs.io/en/stable/reference_sequences.html
https://agentpy.readthedocs.io/en/stable/reference_agents.html#agentpy.Agent.record
https://agentpy.readthedocs.io/en/stable/reference_model.html#agentpy.Model.stop
https://agentpy.readthedocs.io/en/stable/reference_model.html#agentpy.Model.run
https://agentpy.readthedocs.io/en/stable/reference_sample.html
https://agentpy.readthedocs.io/en/stable/reference_experiment.html
https://agentpy.readthedocs.io/en/stable/comparison.html
https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.03065


The output of both models and experiments is given as a DataDict with tools to save, arrange,
and analyse data. Here, we use the seaborn library to display a histogram of the experiment’s
output. The plot is presented in Figure 3. It shows that the random interaction of the agents
creates an inequality of wealth that resembles a Boltzmann-Gibbs distribution.
import seaborn as sns
sns.histplot(data=results.variables.MoneyAgent, binwidth=1)

0 2 4 6 8 10
0

500

1000

1500

2000

Co
un

t

wealth

Figure 3: Histogram of the agents’ wealth in the model example.

More examples - including spatial environments, networks, stochastic processes, interactive
simulations (see Figure 1), animations, and sensitivity analysis - can be found in the model
library and user guides of the documentation. For questions and ideas, please visit the discus-
sion forum.3

Acknowledgements
This study has received funding through an ERC Advanced Grant from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement n° 741087). I thank Jeroen C.J.M van den Bergh, Ivan Savin, Martí Bosch,
and James Millington for their helpful comments.

References
Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. P. (2017). Agent based

modelling and simulation tools: A review of the state-of-art software. Computer Science
Review, 24, 13–33. https://doi.org/10.1016/j.cosrev.2017.03.001

Arthur, W. B. (2021). Foundations of complexity economics. Nature Reviews Physics, 3,
136–145. https://doi.org/10.1038/s42254-020-00273-3

Bianchi, F., & Squazzoni, F. (2015). Agent-based models in sociology. WIREs Computational
Statistics, 7(4), 284–306. https://doi.org/10.1002/wics.1356

Castro, J., Drews, S., Exadaktylos, F., Foramitti, J., Klein, F., Konc, T., Savin, I., & Bergh,
J. van den. (2020). A review of agent-based modeling of climate-energy policy. WIREs
Climate Change, 11(4), e647. https://doi.org/10.1002/wcc.647

DeAngelis, D. L., & Diaz, S. G. (2019). Decision-making in agent-based modeling: A current
review and future prospectus. Frontiers in Ecology and Evolution, 6, 237. https://doi.

3Link to the AgentPy dicussion forum: https://github.com/JoelForamitti/agentpy/discussions

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software, 6(62), 3065. https:
//doi.org/10.21105/joss.03065

4

https://agentpy.readthedocs.io/en/stable/reference_data.html
https://agentpy.readthedocs.io/en/stable/model_library.html
https://agentpy.readthedocs.io/en/stable/model_library.html
https://agentpy.readthedocs.io/en/stable/guide.html
https://github.com/JoelForamitti/agentpy/discussions
https://github.com/JoelForamitti/agentpy/discussions
https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1038/s42254-020-00273-3
https://doi.org/10.1002/wics.1356
https://doi.org/10.1002/wcc.647
https://doi.org/10.3389/fevo.2018.00237
https://doi.org/10.3389/fevo.2018.00237
https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.03065


org/10.3389/fevo.2018.00237
Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature,

460(7256), 685–686. https://doi.org/10.1038/460685a
Madsen, J. K., Bailey, R., Carrella, E., & Koralus, P. (2019). Analytic versus computational

cognitive models: Agent-based modeling as a tool in cognitive sciences. Current Directions
in Psychological Science, 28(3), 299–305. https://doi.org/10.1177/0963721419834547

Masad, David, & Kazil, Jacqueline. (2015). Mesa: An Agent-Based Modeling Framework.
In Kathryn Huff & James Bergstra (Eds.), Proceedings of the 14th Python in Science
Conference (pp. 51–58). https://doi.org/10.25080/Majora-7b98e3ed-009

North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic
solutions with agent-based modeling and simulation. Oxford University Press. https:
//doi.org/10.1093/acprof:oso/9780195172119.001.0001

Wilensky, U. (1999). NetLogo. Center for Connected Learning; Computer-Based Modeling,
Northwestern University. Evanston, IL. http://ccl.northwestern.edu/netlogo/

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python. Journal of Open Source Software, 6(62), 3065. https:
//doi.org/10.21105/joss.03065

5

https://doi.org/10.1038/460685a
https://doi.org/10.1177/0963721419834547
https://doi.org/10.25080/Majora-7b98e3ed-009
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.03065

	Introduction
	Statement of Need
	Basic structure
	Model example
	Acknowledgements
	References

