
Magicwand: A platform to provide high-quality, reliable,
and reproducible data sets for low-and-slow DDoS
attacks.
Banjo Obayomi1, Christopher H. Todd1, Lucas Cadalzo1, David
Killian1, and Anthony C. Wong2

1 Two Six Labs 2 UnaffiliatedDOI: 10.21105/joss.03032

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @nidhog
• @gradvohl

Submitted: 30 November 2020
Published: 20 May 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Magicwand is a Python platform to provide high-quality, reliable, and replicable data sets for
low-and-slow distributed denial-of-service (LSDDoS) attacks. Using a Command line interface
(CLI), researchers can generate packet capture (.pcap) data with labels for attackers and
benign clients. With the use of Docker, and JavaScript Object Notation (JSON) files, Ma
gicwand provides a customizable and extensible data generation framework to generate a
multitude of network traffic PCAPs.

Statement of Need

Distributed denial-of-service (DDoS) attacks remain a pervasive cybersecurity threat (Krebs,
2016), (Plante, 2015), and (Markoff, 2008). While various commercial services such as Akamai
and CloudFlare are effective in mitigating traditional, high-volume DDoS attacks, LSDDoS
attacks present a different kind of threat (Makrushin, 2013). These attacks stealthily degrade
server performance through cleverly crafted transmissions of data, rather than brute-force
floods of traffic. The adversary sends low-bandwidth requests that slowly transmit data and
consume a disproportionate amount of the server’s resources. The relatively small amount of
traffic needed to cause a denial-of-service has two important consequences: these attacks are
both easier to launch and more difficult to detect, in comparison to high-volume DDoS.
In order to create a robust LSDDoS defense, researchers in the security community must
have access to sufficient data capturing how these attacks behave. The most widely-adopted
public source of data for LSDDoS was generated by the Canadian Institute for Cybersecurity
(CIC) at the University of New Brunswick (Sharafaldin & Ghorbani, 2018). However, the
vast majority of instances in this dataset are from high-volume attacks, and the dataset does
not contain any benign traffic directed towards the victim host. Additionally, the range of
LSDDoS attacks employed is limited. In an effort to facilitate the generation of more thorough
LSDDoS datasets, we are introducing our traffic generation tool Magicwand.
Through its development, these key goals informed the design and implementation:

• The user must not be required to be an expert in low-and-slow DDoS attacks.
• Data generated must be representative of low-and-slow DDoS attack behavior and their

impact on victim servers.
• Data generated should be validated through a series of automated tests and checks.
• The software must be able to generate data on any hardware that meets a minimum

set of requirements.

Obayomi et al., (2021). Magicwand: A platform to provide high-quality, reliable, and reproducible data sets for low-and-slow DDoS attacks..
Journal of Open Source Software, 6(61), 3032. https://doi.org/10.21105/joss.03032

1

https://doi.org/10.21105/joss.03032
https://github.com/openjournals/joss-reviews/issues/3032
https://github.com/twosixlabs/magicwand-datatool
https://doi.org/10.5281/zenodo.4774301
http://arfon.org/
https://github.com/nidhog
https://github.com/gradvohl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03032

• The software should be extensible to enable new components in the future.
• The software should allow for user flexibility in configuration of LSDDoS scenarios.

Extensibility

Magicwand was designed as a framework that can be extended based on project needs; to
this end, the tool is comprised of extensible components that can be considered a foundation
for expanding the tool’s capabilities. The four core components of the system are the attack
clients, benign clients, systems under threat (SUTs), and sensors. Each of these components
was designed to be operationalized into any Magicwand experiment.

Attack Clients

The set of implemented attack images consists of Slowloris (Valialkin, 2014), R U Dead Yet
(Shekyan, 2011), Slow Read (Shekyan, 2011), Apache Killer (Stampar, 2011), Sockstress
(Hornby, 2012), and a second implementation of Slowloris (Valialkin, 2014). The JSON files
provide configurations that can scale the intensity of attack and adjust other attack-specific-
specific parameters (e.g. threads per connection for Apache Killer).

Benign Clients

For benign traffic generation, Magicwand uses customized agents, based on Locust (Byström
et al., 2019), that continuously browse the SUT, traversing randomly from link to link within
the SUT. The JSON files allow for the configuration of parameters such as clients per con-
tainer, connection runtime, rate of activity, and more.

System Under Threat (SUT)

The primary SUT included with Magicwand is an Apache WordPress server. We choose
this stack for two reasons: first, it is widely used on the web, ensuring our system has wide
applicability. Second, there is a substantial set of known LSDDoS attack implementations for
this stack.

Sensors

Magicwand includes sensors that use tcpdump to capture real-time network traffic and provide
a PCAP for each experiment. An additional sensor captures Round-Trip-Time (RTT) data of
the SUT to understand the impact of the attack and what a client would experience during
the experiment.

Developing A New Component

Developing a new Magicwand component requires extending the Python MwComponent ab-
stract base class. The critical methods/attributes are validate, run, and config and must
be implemented for a new component. The developer must also create a configuration.j
son file that defines the parameters for the component and default values.

Obayomi et al., (2021). Magicwand: A platform to provide high-quality, reliable, and reproducible data sets for low-and-slow DDoS attacks..
Journal of Open Source Software, 6(61), 3032. https://doi.org/10.21105/joss.03032

2

https://doi.org/10.21105/joss.03032

Component Containerization

Magicwand experiments rely on Docker containers to run any component. For each com-
ponent, a user will need to create a Dockerfile that will run the component during the
experiment, a docker-compose.yml file that will handle parameters and runtime-config for
the component during the experiment.

Experiments

Experiments are defined by the components that will run, the timeline for each component
to execute, and customizable configuration for each component. Each experiment will run
locally and generate data that includes PCAPs of the network traffic generated, data from
each sensor component, and metadata from the experiment.

System Calibration

To ensure the data is representative of LSDDoS attacks and realistic benign clients, Magicwand
includes calibration functionality.
For benign components, Magicwand ensures that the amount of benign traffic flowing towards
the SUT is not so large that it causes congestion, absent any malicious traffic.
For attack components, Magicwand finds the configuration required to ensure an attack is
strong enough to induce a denial-of-service condition on the SUT. For example, Apache Killer
calibration process will determine the parameters needed to yield a mean RTT greater than
2x the mean RTT of experiments with only benign traffic.
Attack calibration works by launching two experiments: one with only benign traffic and the
other with only attack traffic. We then compare various metrics between the two experiments
that detail the state of the SUT, such as RTT and memory consumption. The SUT parameters
are held constant between each experiment to compare how the attack and benign traffic
changes based on the inputs. If the ratio between the metrics of the benign and attack
experiments indicates that the attack succeeded in inducing a denial-of-service condition,
then the JSON configuration file is saved.

Data Validation

We validate each experiment to ensure representative and expected data was produced. After
each experiment, Magicwand conducts a series of checks based on the input parameters against
the generated data and run logs. Each component has its own validation functionality.
Attack components verify that each attack yielded expected signatures in the data; an example
would be Apache Killer generating packets that send overlapping bytes in the resulting PCAP.
Each attack has specific validations that are tailored to how the attack works.
Benign client validation confirms that the clients performed the tasks they were configured to
do; an example is verifying that an experiment with 10 benign clients attempted to spin up
10 connections during the experiment.
Sensor validation confirms that the sensors ran and yielded the data each sensor is responsible
for and that the data is not corrupted. SUT validation confirms that SUT receives all expected
trafic and that it ran as expected through the experiment.

Obayomi et al., (2021). Magicwand: A platform to provide high-quality, reliable, and reproducible data sets for low-and-slow DDoS attacks..
Journal of Open Source Software, 6(61), 3032. https://doi.org/10.21105/joss.03032

3

https://doi.org/10.21105/joss.03032

While we have been systematic and methodical in crafting these checks to make them as
comprehensive as possible, these are not exhaustive. This is where researchers can define
validation methods to ensure their Magicwand experiments are producing data that they
would expect.

Acknowledgements

This research was developed with funding from the Defense Advanced Research Projects
Agency (DARPA) under Contract # HR0011-16-C-0060. This document was cleared for re-
lease under Distribution Statement” A” (Approved for Public Release, Distribution Unlimited).
The views, opinions, and/or findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the Department of Defense of the
U.S. Government.

References

Byström, C., Heyman, J., Hamrén, J., & Heyman, H. (2019). Locust. In GitHub repository.
https://github.com/locustio/locust; GitHub.

Hornby, T. (2012). Sockstress. In GitHub repository. https://github.com/defuse/sockstress;
GitHub.

Krebs, B. (2016). KrebsOnSecurity hit with record DDoS. https://krebsonsecurity.com/2016/
09/krebsonsecurity-hit-with-record-ddos/

Makrushin, D. (2013). The cost of launching a DDoS attack. https://securelist.com/
the-cost-of-launching-a-ddos-attack/77784/

Markoff, J. (2008). Before the gunfire, cyberattacks. The New York Times. https://www.
nytimes.com/2008/08/13/technology/13cyber.html

Plante, C. (2015). Valve’s $18 million dota 2 tournament delayed by DDoS attack. https:
//www.theverge.com/2015/8/4/9097597/the-international-dota-2-ddos-attack-valve

Sharafaldin, L., I., & Ghorbani, A. A. (2018). Toward generating a new intrusion detec-
tion dataset and intrusion traffic characterization. SciTePress. https://doi.org/10.5220/
0006639801080116

Shekyan, S. (2011). SlowHTTPTest. In GitHub repository. https://github.com/shekyan/
slowhttptest; GitHub.

Stampar, M. (2011). KillApachePy. In GitHub repository. https://github.com/tkisason/
KillApachePy/; GitHub.

Valialkin, A. (2014). Goloris. In GitHub repository. https://github.com/valyala/goloris;
GitHub.

Obayomi et al., (2021). Magicwand: A platform to provide high-quality, reliable, and reproducible data sets for low-and-slow DDoS attacks..
Journal of Open Source Software, 6(61), 3032. https://doi.org/10.21105/joss.03032

4

https://github.com/locustio/locust
https://github.com/defuse/sockstress
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://securelist.com/the-cost-of-launching-a-ddos-attack/77784/
https://securelist.com/the-cost-of-launching-a-ddos-attack/77784/
https://www.nytimes.com/2008/08/13/technology/13cyber.html
https://www.nytimes.com/2008/08/13/technology/13cyber.html
https://www.theverge.com/2015/8/4/9097597/the-international-dota-2-ddos-attack-valve
https://www.theverge.com/2015/8/4/9097597/the-international-dota-2-ddos-attack-valve
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://github.com/shekyan/slowhttptest
https://github.com/shekyan/slowhttptest
https://github.com/tkisason/KillApachePy/
https://github.com/tkisason/KillApachePy/
https://github.com/valyala/goloris
https://doi.org/10.21105/joss.03032

	Summary
	Statement of Need
	Extensibility
	Attack Clients
	Benign Clients
	System Under Threat (SUT)
	Sensors
	Developing A New Component
	Component Containerization

	Experiments
	System Calibration
	Data Validation
	Acknowledgements
	References

