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Statement of need

Complex systems throughout nature and society are often best represented as networks. Over
the last two decades, alongside the increased availability of large network datasets, we have
witnessed the rapid rise of network science (Amaral & Ottino, 2004; Barabási, 2016; New-
man, 2018; Vespignani et al., 2008). This field is built around the idea that an increased
understanding of the complex structural properties of a variety systems will allow us to better
observe, predict, and even control the behavior of these systems.
However, for many systems, the data we have access to is not a direct description of the
underlying network. More and more, we see the drive to study networks that have been
inferred or reconstructed from non-network data—in particular, using time series data from
the nodes in a system to infer likely connections between them (Brugere et al., 2018; Runge,
2018). Selecting the most appropriate technique for this task is a challenging problem in
network science. Different reconstruction techniques usually have different assumptions, and
their performance varies from system to system in the real world. One way around this problem
could be to use several different reconstruction techniques and compare the resulting networks.
However, network comparison is also not an easy problem, as it is not obvious how best to
quantify the differences between two networks, in part because of the diversity of tools for
doing so.
The netrd Python package seeks to address these two parallel problems in network science.

Summary

netrd offers, to our knowledge, the most extensive collection of both network reconstruction
techniques and network comparison techniques (often referred to as graph distances) in a
single library. Below, we expand on these two main functionalities of the netrd package.
The first core use of netrd is to reconstruct networks from time series data. Given time series
data, TS, of the behavior of N nodes / components / sensors of a system over the course of
L timesteps, and given the assumption that the behavior of every node, vi, may have been
influenced by the past behavior of other nodes, vj , there are dozens of techniques that can
be used to infer which connections, eij , are likely to exist between the nodes. That is, we can
use one of many network reconstruction techniques to create a network representation, Gr,
that attempts to best capture the relationships between the time series of every node in TS.
netrd lets users perform this network reconstruction task using 17 different techniques. This
means that up to 17 different networks can formed created from a single time series dataset.
For example, in Figure 1 we show the outputs of 15 different reconstruction techniques applied
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to time series data generated from an example network (Barucca, 2014; Donges et al., 2009;
Edelman & Rao, 2005; Friedman et al., 2008; Hoang et al., 2019; Ledoit & Wolf, 2003;
Mishchenko et al., 2011; Peixoto, 2019; Sheikhattar et al., 2018; Stetter et al., 2012; Sugihara
et al., 2012; Zeng et al., 2013).
Practitioners often apply these network reconstruction algorithms to real time series data. For
example, in neuroscience, researchers often try to reconstruct functional networks from time
series readouts of neural activity (Mishchenko et al., 2011). In economics, researchers can infer
networks of influence between companies based on time series of changes in companies’ stock
prices (Squartini et al., 2018). At the same time, it is often quite helpful having the freedom
to simulate arbitrary time series dynamics on randomly generated networks. This provides
a controlled setting to assess the performance of network reconstruction algorithms. For
this reason, the netrd package also includes a number of different techniques for simulating
dynamics on networks.
The second core use of netrd addresses a common goal when studying networks: describing
and quantifying the differences between two networks. This is a challenging problem, as there
are countless axes upon which two networks can differ; as such, a number of graph distance
measures have emerged over the years attempting to address this problem. As is the case for
many hard problems in network science, it can be difficult to know which (of many) measures
are suited for a given setting. In netrd, we consolidate over 20 different graph distance
measures into a single package (Bagrow & Bollt, 2019; Berlingerio et al., 2012; Carpi et al.,
2011; Chen et al., 2018; De Domenico & Biamonte, 2016; Donnat & Holmes, 2018; Golub
& Loan, 2013; Hamming, 1950; Hammond et al., 2013; Ipsen & Mikhailov, 2002; Jaccard,
1901; Jurman et al., 2011, 2015; Koutra et al., 2016; Mellor & Grusovin, 2019; Monnig &
Meyer, 2018; Schieber et al., 2017; Torres et al., 2019; Tsitsulin et al., 2018). Figure 2
shows an example of just how different these measures can be when comparing two networks,
G1 and G2. This submodule in netrd has already been used in recent work with a novel
characterization of the graph distance literature (Hartle et al., 2020).
This package builds on commonly used Python packages (e.g. networkx (Hagberg et al.,
2008), numpy (Harris et al., 2020), scipy (Virtanen et al., 2020)) and is already a widely
used resource for network scientists and other multidisciplinary researchers. With ongoing
open-source development, we see this as a tool that will continue to be used by all sorts of
researchers to come.

Related software packages

In the network reconstruction literature, there are often software repositories that detail a
single technique or a few related ones. For example Lizier (2014) implemented a Java pack-
age (portable to Python, octave, R, Julia, Clojure, MATLAB) that uses information-theoretic
approaches for inferring network structure from time-series data (Lizier, 2014); Runge et
al. (2019) created a Python package that combines linear or nonlinear conditional indepen-
dence tests with a causal discovery algorithm to reconstruct causal networks from large-scale
time series datasets (Runge et al., 2019). These are two examples of powerful and widely
used packages though neither includes as wide-ranging techniques as netrd (nor were they
explicitly designed to). In the graph distance literature, the same trend is broadly true: many
one-off software repositories exist for specific measures. However, there are some packages
that do include multiple graph distances; for example, Wills (2017) created a NetComp package
that includes several variants of a few distance measures included here (Wills, 2017).
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Figure 1: Example of the network reconstruction pipeline. (Top row) A sample network, its
adjacency matrix, and an example time series, TS, of node-level activity simulated on the network.
(Bottom rows) The outputs of 15 different network reconstruction algorithms, each using TS to
create a new adjacency matrix that captures key structural properties of the original network.
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Figure 2: Example of the graph distance measures in netrd. Here, we measure the graph distance
between two networks using 20 different distance measures from netrd.
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