
(py)oscode: fast solutions of oscillatory ODEs

Fruzsina Julia Agocs1, 2

1 Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK 2
Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, UK

DOI: 10.21105/joss.02830

Software
• Review
• Repository
• Archive

Editor: Melissa Weber
Mendonça
Reviewers:

• @jakryd
• @dlfivefifty

Submitted: 07 October 2020
Published: 15 December 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Oscillatory differential equations are ubiquitous in physics, chemistry and beyond. They arise
in quantum mechanics, electrical circuitry, suspension systems, molecular dynamics, and in
models of gravitational and electromagnetic waves. The numerical solution of such systems
however can be a computational bottleneck when tackled with conventional methods available
from numerical libraries.
We present (py)oscode, a general-purpose numerical routine for solving a class of highly
oscillatory ordinary differential equations (ODEs) efficiently. The package has been designed
to solve equations which describe a single harmonic oscillator with a time-dependent frequency
and damping term, i.e. are of the form

y′′ + 2γ(x)y′ + ω2(x)y = 0. (1)

The frequency ω(x) and damping γ(x) terms do not need to be explicit functions of x (they
can instead be e.g. the result of another numerical solution of an ODE), as they are supplied
as sequences ωj , γj evaluated at xi ≤ xj ≤ xf , where (xi, xf) is the integration range.
(py)oscode is written in C++, but comes with a Python wrapper. Its Python interface
was designed to be similar to those included in SciPy’s (Virtanen et al., 2020) numerical
ODE solution modules. This is demonstrated in the example below whose output is shown in
Figure 1.

import numpy as np
import scipy.special as sp
import pyoscode

Set up the Airy equation as an example: y'' + xy = 0
xs = np.linspace(0,40.0,5000)
ws = np.sqrt(xs)
gs = np.zeros_like(xs)
Initial conditions
xi = 1.0
xf = 40.0
yi = sp.airy(-xi)[0]
dyi = -sp.airy(-xi)[1]
Get dense output at the following points
t_eval = np.linspace(15,35,600)
Solve the equation
solution = pyoscode.solve(xs, ws, gs, xi, xf, yi, dyi, t_eval=t_eval)

Agocs, F. J., (2020). (py)oscode: fast solutions of oscillatory ODEs. Journal of Open Source Software, 5(56), 2830. https://doi.org/10.21105/
joss.02830

1

https://doi.org/10.21105/joss.02830
https://github.com/openjournals/joss-reviews/issues/2830
https://github.com/fruzsinaagocs/oscode
https://doi.org/10.5281/zenodo.4322958
http://mtm.ufsc.br/~melissa
http://mtm.ufsc.br/~melissa
https://github.com/jakryd
https://github.com/dlfivefifty
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02830
https://doi.org/10.21105/joss.02830

Figure 1: Numerical solution of the Airy equation, y′′ + xy = 0, with pyoscode. The increase in
step-size of pyoscode’s internal steps (orange dots) is due to the algorithm switching from using the
RK method to the WKB approximation in the presence of high-frequency oscillations. The orange
segment shows dense output, the solution at these points was computed at no additional evaluations
of terms in the differential equation.

Statement of need

Even if the terms in Equation 1 change slowly, if the frequency of oscillations in the solution is
high enough, standard numerical methods struggle to solve such equations quickly. Traditional
methods have to trace every oscillation in the solution, taking many steps in x at an enormous
computational cost. The algorithm underlying (py)oscode, published in Agocs, Handley, et
al. (2020) and based on W. J. Handley et al. (2016), can detect when the solution is oscillatory
and switch to a method based on an analytic approximation (Wentzel–Kramers–Brillouin,
WKB) suited for oscillatory functions, otherwise using a Runge–Kutta (RK) method. Using
the WKB approximation allows the algorithm to skip over several wavelengths of oscillation
in a single step, reducing the number of steps taken drastically. It adaptively updates its
step-size to keep the local numerical error within a user-specified tolerance. (py)oscode is
capable of producing a solution estimate at an arbitrary value of x, not just at its internal
steps, therefore it can be used to generate a “continuous” solution, or dense output (Agocs,
Hobson, et al., 2020).

Related research and software

(py)oscode’s development was motivated by the need for a significantly more efficient solver
for the evolution of early-universe quantum fluctuations. These perturbations are thought to
have been stretched to macroscopic scales by a phase of accelerated expansion of the universe
(cosmic inflation), to later become the large-scale structure we see today. To understand the
origins of structure it is therefore essential to model the perturbations and understand the
physics involved in inflation. (py)oscode has been used to speed up the numerical evolution
of quantum fluctuations in the early universe, enabling the exploration of models beyond the
standard model of cosmology (W. Handley, 2019). It served as inspiration for other numerical
methods aiming to extend the range of oscillatory ODEs to solve (Bamber & Handley, 2020).
The efficient solution of oscillatory ODEs is a long-standing numerical analysis problem with
many existing methods to handle certain sub-classes of equations. Examples include successful

Agocs, F. J., (2020). (py)oscode: fast solutions of oscillatory ODEs. Journal of Open Source Software, 5(56), 2830. https://doi.org/10.21105/
joss.02830

2

https://doi.org/10.21105/joss.02830
https://doi.org/10.21105/joss.02830

methods by Petzold (Petzold, 1981), reviewed in Petzold et al. (1997) with many references
therein, Iserles et al. (Condon et al., 2009, 2011; Deaño et al., 2017), and Bremer (Bremer,
2018a), with code available from Bremer (2018b).

Acknowledgements

I thank Lukas Hergt for invaluable discussions during the early development of (py)oscode
and his ongoing support. Construction of the algorithm would not have been possible without
the help and guidance of Will Handley, Mike Hobson, and Anthony Lasenby. I was supported
by the Science and Technology Facilities Council (STFC).

References

Agocs, F. J., Handley, W. J., Lasenby, A. N., & Hobson, M. P. (2020). Efficient method for
solving highly oscillatory ordinary differential equations with applications to physical sys-
tems. Physical Review Research, 2, 013030. https://doi.org/10.1103/PhysRevResearch.
2.013030

Agocs, F. J., Hobson, M. P., Handley, W. J., & Lasenby, A. N. (2020). Dense output for
highly oscillatory numerical solutions. http://arxiv.org/abs/2007.05013

Bamber, J., & Handley, W. (2020). Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin
method. Physical Review D, 101, 043517. https://doi.org/10.1103/PhysRevD.101.
043517

Bremer, J. (2018a). On the numerical solution of second order ordinary differential equations
in the high-frequency regime. Applied and Computational Harmonic Analysis, 44(2), 312–
349. https://doi.org/10.1016/j.acha.2016.05.002

Bremer, J. (2018b). Phase functions: Fortran 90 code for solving highly oscillatory ordinary
differential equations in O(1) time. In GitHub repository. GitHub. https://github.com/
JamesCBremerJr/Phase-functions

Condon, M., Deaño, A., & Iserles, A. (2011). Asymptotic solvers for oscillatory systems of dif-
ferential equations. SeMA Journal, 53(1), 79–101. https://doi.org/10.1007/bf03322583

Condon, M., Deaño, A., Iserles, A., & Maczyński, K. (2009). On numerical methods for
highly oscillatory problems in circuit simulation. COMPEL - The International Journal for
Computation and Mathematics in Electrical and Electronic Engineering, 28(6), 1607–1618.
https://doi.org/10.1108/03321640910999897

Deaño, A., Huybrechs, D., & Iserles, A. (2017). Computing highly oscillatory integrals. Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611975123

Handley, W. (2019). Primordial power spectra for curved inflating universes. Physical Review
D, 100, 123517. https://doi.org/10.1103/PhysRevD.100.123517

Handley, W. J., Lasenby, A. N., & Hobson, M. P. (2016). The Runge-Kutta-Wentzel-Kramers-
Brillouin Method. http://arxiv.org/abs/1612.02288

Petzold, L. R. (1981). An efficient numerical method for highly oscillatory ordinary differential
equations. SIAM Journal on Numerical Analysis, 18(3), 455–479. https://doi.org/10.
1137/0718030

Petzold, L. R., Jay, L. O., & Yen, J. (1997). Numerical solution of highly oscillatory or-
dinary differential equations. Acta Numerica, 6, 437–483. https://doi.org/10.1017/
S0962492900002750

Agocs, F. J., (2020). (py)oscode: fast solutions of oscillatory ODEs. Journal of Open Source Software, 5(56), 2830. https://doi.org/10.21105/
joss.02830

3

https://doi.org/10.1103/PhysRevResearch.2.013030
https://doi.org/10.1103/PhysRevResearch.2.013030
http://arxiv.org/abs/2007.05013
https://doi.org/10.1103/PhysRevD.101.043517
https://doi.org/10.1103/PhysRevD.101.043517
https://doi.org/10.1016/j.acha.2016.05.002
https://github.com/JamesCBremerJr/Phase-functions
https://github.com/JamesCBremerJr/Phase-functions
https://doi.org/10.1007/bf03322583
https://doi.org/10.1108/03321640910999897
https://doi.org/10.1137/1.9781611975123
https://doi.org/10.1103/PhysRevD.100.123517
http://arxiv.org/abs/1612.02288
https://doi.org/10.1137/0718030
https://doi.org/10.1137/0718030
https://doi.org/10.1017/S0962492900002750
https://doi.org/10.1017/S0962492900002750
https://doi.org/10.21105/joss.02830
https://doi.org/10.21105/joss.02830

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Agocs, F. J., (2020). (py)oscode: fast solutions of oscillatory ODEs. Journal of Open Source Software, 5(56), 2830. https://doi.org/10.21105/
joss.02830

4

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.02830
https://doi.org/10.21105/joss.02830

	Summary
	Statement of need
	Related research and software
	Acknowledgements
	References

