
dymos: A Python package for optimal control of
multidisciplinary systems
Robert Falck1, Justin S. Gray1, Kaushik Ponnapalli2, and Ted Wright1

1 NASA Glenn Research Center 2 HX5 LLC
DOI: 10.21105/joss.02809

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @goerz
• @thowell

Submitted: 07 September 2020
Published: 31 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Dymos is a library for optimizing control schedules for dynamic systems — sometimes referred
to as optimal control or trajectory optimization. There are a number of other optimal control
libraries that tackle similar kinds of problems, such as OTIS4 (Paris et al., 2006), GPOPS-
II (Patterson & Rao, 2014),and CASADI (Andersson et al., 2019). These tools all rely on
gradient-based optimization to solve optimal control problems, though their methods of com-
puting the gradients vary. Dymos is built on top of the OpenMDAO framework (Gray et al.,
2019) and supports its modular derivative system which allows users to mix-and-match from
finite-differencing, complex-step, hand-differentiated, and algorithmic differentiation. This
flexibility allows Dymos to efficiently solve optimal control problems constructed with both
ordinary differential equations (ODE) and differential-algebraic equations (DAE).
Dymos can also help solve more general optimization problems where dynamics are only one
part in a larger system-level model with additional — potentially computationally expensive —
calculations that come before and after the dynamic calculations. These broader problems are
commonly referred to as co-design, controls-co-design, and multidisciplinary design optimiza-
tion. Dymos provides specific APIs and features that make it possible to integrate traditional
optimal-control models into a co-design context, while still supporting analytic derivatives
that are necessary for computational efficiency in these complex use cases. An example of a
co-design problem that was solved with Dymos is the coupled trajectory-thermal design of an
electric vertical takeoff and landing aircraft where the thermal management and propulsion
systems were designed simultaneously with the flight trajectories to ensure no components
overheated (Hendricks et al., 2020).

Difference between optimal-control and co-design

Optimal-control and co-design problems deal with dynamic systems. The evolution of the
states over time is governed by an ordinary differential equation (ODE) or differential-algebraic
equation (DAE):

˙̄x = fode(x̄, t, ū, d̄)

Here, x̄ is a vector of time-varying state variables whose behavior is affected by time (t), a
vector of dynamic controls (ū), and a vector of static design parameters (d̄).
To optimize a dynamic system we also need to account for the objective function (J):

J = fobj(x̄, t, ū, d̄)

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

1

https://doi.org/10.21105/joss.02809
https://github.com/openjournals/joss-reviews/issues/2809
https://github.com/OpenMDAO/dymos
https://doi.org/10.5281/zenodo.4646412
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/goerz
https://github.com/thowell
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02809

In addition, there are constraints that typically need to be enforced:

Time : tlb ≤ t ≤ tub

StateVariables : x̄lb ≤ x̄ ≤ x̄ub

DynamicControls : ūlb ≤ ū ≤ ūub

DesignParameters : d̄lb ≤ d̄ ≤ d̄ub

Initial BoundaryConstraints : ḡ0,lb ≤ g0(x̄0, t0, ū0, d̄) ≤ ḡ0,ub

Final BoundaryConstraints : ḡf,lb ≤ gf (x̄f , tf , ūf , d̄) ≤ ḡf,ub

PathConstraints : p̄lb ≤ p(x̄, t, ū, d̄) ≤ p̄ub

In the mathematical sense what distinguishes optimal control from co-design is the particulars
of which design variables and constraints are actually considered by the optimization. Pure
optimal-control problems deal with a system of fixed design and seek to maximize performance
by adjusting dynamic quantities (t, x̄, ū) such as position, speed, fuel-burned, and battery
state-of-charge. Co-design problems simultaneously vary the static design parameters of a
system (d̄) and its dynamic behavior (t, x̄, ū) to reach maximum performance.
In practice, the mathematical distinction is too rigid and a more practical distinction is made
based on where the static and dynamic calculations are implemented and how complex each
of them is. For very simple physical design parameters (e.g. the radius of a cannon ball, spring
constants, linkage lengths, etc) it is common to integrate the design calculations directly into
the ODE. Even though the calculations are static in nature, they can easily be coded as part
of the ODE and still fit well into the optimal-control paradigm. The optimization structure
thus looks like this:

Figure 1: Model structure for a traditional optimal control problem

However, not all problems can be handled with such a compact implementation. For example
if the physical design problem included shaping of an airfoil using expensive numerical solutions
of partial differential equations (PDE) to predict drag, then one would not want to embed
that PDE solver into the dynamic model. Instead the user could set up a coupled model with
the PDE solver going first, and passing a table of data to be interpolated to the dynamic
model. This effectively splits calculations up into static and dynamic components. This
implementation structure is called co-design.
Traditionally, this co-design implementation would be done via sequential optimization with
a manual outer design iteration between the static and dynamic models, potentially with
different teams of people working on each one. One team would come up with a physical
design using their own internal optimization setup. A second team takes the design and
generates optimal-control profiles for it. Of course, the iterations do not need to be manual.
It is also possible to set up an iterative loop around static and dynamic models to converge
the problem numerically. A sequential co-design implementation looks like this:

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

2

https://doi.org/10.21105/joss.02809

Figure 2: Model structure for a sequential co-design problem

Dymos can support sequential co-design, but its unique value is that it also enables a more
tightly-coupled co-design process with a single top level optimizer handling both parts of the
problem simultaneously.

Figure 3: Model structure for a coupled co-design problem

Compared to sequential co-design, coupled co-design offers the potential to find better designs
with much lower computational cost. However, it is also more challenging to implement
because the top-level optimizer requires derivatives to be propagated between the static and
dynamic parts of the model. Dymos overcomes this difficulty by providing APIs to exploit
OpenMDAO’s analytic derivative functionality at the model level. Data can be passed from
the static model to the dynamic model and vice versa, allowing the construction of the coupled
model for optimization.

ODE versus DAE

Optimal-control software typically requires that the dynamics of the system be defined as a
set of ordinary differential equations (ODE) that use explicit functions to compute the rates
of the state variables to be time-integrated. Sometimes the dynamics are instead posed as
a set of differential-algebraic equations (DAE), where some residual equations need to be
satisfied implicitly in order to solve for the state rates. From the perspective of an optimal-
control or co-design problem both ODE and DAE formulations provide state rates that need
to be integrated over time. The difference is that ODEs are explicit functions which are
relatively easy to differentiate, but DAEs are implicit functions which are much more difficult

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

3

https://doi.org/10.21105/joss.02809

to differentiate. Since the derivatives are needed to perform optimization, DAEs are more
challenging to optimize.
One relatively common use case for DAEs is differential inclusions, in which the state trajectory
is posed as a dynamic control and the traditional control schedule needed to achieve that
trajectory is found using a nonlinear solver within the dynamic model (Seywald, 1994). For
some problems this method provides a more natural and numerically-beneficial design space for
the optimizer to traverse, but the nonlinear solver poses numerical challenges for computing
derivatives for the optimizer. A simple approach to this is to just use finite-differences across
the nonlinear solver, but this has been shown to be expensive and numerically unstable (Gray
et al., 2014). Another option, taken by some optimal control libraries, is to apply monolithic
algorithmic differentiation (Griewank, 2003) across the nonlinear solver. While it does provide
accurate derivatives, the monolithic approach is expensive and uses a lot of memory (Kenway
et al., 2019; Mader et al., 2008). The most efficient approach is to use a pair of analytic
derivative approaches called the direct and adjoint methods, which were generalized in a single
unified derivative equation (UDE) by Hwang and Martins (Hwang & Martins, 2018).
Dymos adopts the UDE approach, which uses a linear solver to compute total derivatives
needed by the optimizer using only partial derivatives of the residual equations in the DAE.
This approach offers two key advantages. First, partial derivatives of the DAE residual equa-
tions are much less computationally challenging to compute. Second, by using the OpenMDAO
underpinnings of Dymos, users can construct their DAE in a modular fashion and combine var-
ious methods of computing the partial derivatives via finite-difference, complex-step (Martins
et al., 2003), algorithmic differentiation, or hand differentiation as needed.

The Dymos perspective on optimal control

Dymos breaks the trajectory into portions of time called phases. Breaking the trajectory
into phases provides several capabilities. Intermediate constraints along a trajectory can be
enforced by applying a boundary constraint to a phase that begins or ends at the time of
interest. For instance, the optimal trajectory of a launch vehicle may be required to ascend
vertically to clear a launch tower before it pitches over on its way to orbit. Path constraints
can be applied within each phase to bound some performance parameter within that phase.
For example, reentry vehicles may need to adjust their trajectory to limit aerodynamic heating.
Each phase in a trajectory can use its own separate ODE. For instance, an aircraft with
vertical takeoff and landing capability may use different ODEs for vertical flight and horizontal
flight. ODEs are implemented as standard OpenMDAO models which are passed to phases
at instantiation time with some additional annotations to identify the states, state-rates, and
control inputs.
Every phase uses its own specific time discretization tailored to the dynamics in that portion
of the trajectory. If one part of a trajectory has fast dynamics and another has slow dynamics,
the time evolution can be broken into two phases with separate time discretizations.
In the optimal-control community there are a number of different techniques for discretizing
the continuous optimal control problem into a form that can be solved by a nonlinear optimiza-
tion algorithm; each one is called a transcription. Dymos supports two different collocation
transcriptions: high-order Gauss-Lobatto (Herman & Conway, 1996) and Radau (Garg et al.,
2009). Both of these represent state and control trajectories as piece-wise polynomials of at
least 3rd order and are formulated in a way that makes it possible to efficiently compute the
needed quantities to perform integration in a numerically rigorous fashion.
Dymos also allows the user to choose whether the optimization problem is solved using an
explicit or implicit approach. Some caution with terminology must be taken here because the
term “implicit” is often used to describe time integration schemes (e.g. backwards Euler), but
that is not what is meant in an optimal-control context. Here, explicit propagation is one

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

4

https://doi.org/10.21105/joss.02809

where the full state trajectory is computed starting from the initial value and propagating
forward or from the final value and propagating backward. From the optimizer’s perspective
it will set values for the initial or final state (x̄), the design parameters (d̄), and the controls
(ū) and can expect to be given a physically valid time evolution of the states as the output.
Wrapping an optimizer around an explicit propagation gives what is traditionally called a
“shooting method” in the optimal-control world. In contrast, implicit propagation used within
an optimization does not provide valid trajectories on its own. Instead, implicit methods add
a discretized time-evolution of the state vector (x̄) as an additional design variable to the
optimizer and add an associated set of defect constraints that must be driven to zero to
enforce physics at some set of discrete points in time where the ODE is evaluated. The net
effect is that the full state trajectory is only known once the optimization is fully converged.
In the context of the multidisciplinary design optimization field, explicit phases are similar to
the multidisciplinary design feasible (MDF) optimization architecture and implicit phases are
similar to the simultaneous analysis and design (SAND) optimization architecture (Martins &
Lambe, 2013).
Both implicit and explicit phases are useful in different circumstances. Explicit propagation can
seem to many like a more natural way to formulate the problem because it matches the way
one would use time integration without optimization. However, when used with optimization
explicit propagation is more computationally expensive, sensitive to singularities in the ODE,
and potentially unable to converge to a valid solution. Implicit propagation tends to be less
intuitive computationally, since it does not provide valid state histories without a converged
optimization. The advantages of implicit propagation are that it tends to be faster, more
numerically stable, and more scalable — though also highly sensitive to initial conditions and
optimization scaling.
Dymos supports both explicit and implicit propagation for both its transcriptions, and even
allows mixtures of implicitly and explicitly propagated states within a phase. This flexibility
is valuable because it allows users to tailor their optimization to suit their needs. Switching
transcriptions and changing from implicit to explicit requires very minor code changes —
typically a single line in the run-script. Examples of how to swap between them are given in
the code sample below.

Choice of optimization algorithm

Dymos is not distributed with an optimizer, but relies on the optimizers that are available
in the OpenMDAO installation. OpenMDAO ships with an interface to the optimizers in
SciPy (Virtanen et al., 2020), and an additional wrapper for the pyoptsparse library (Wu
et al., 2020) which has more powerful optimizer options such as SNOPT (Gill et al., 2005)
and IPOPT (Wächter & Biegler, 2006). OpenMDAO also allows users to integrate their
own optimizer of choice, which Dymos can then seamlessly use with without any additional
modifications. For simple problems, Scipy’s SLSQP optimizer generally works fine. On more
challenging optimal-control problems higher-quality optimizers are important for getting good
performance.
Though one could technically choose any optimization algorithm, Dymos is designed to work
primarily with gradient-based algorithms. In general, optimal-control and co-design problems
will have both a very large number of design variables and a very large number of constraints.
Both of these issues make gradient-based methods the strongly-preferred choice. Gradient-
free methods could potentially be used in certain narrow circumstances with problems built
using purely explicit phases and set up intentionally to have a small set of design variables
and constraints.

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

5

https://doi.org/10.21105/joss.02809

Statement of Need

When dealing with the design of complex systems that include transient behavior, co-design
becomes critical (Garcia-Sanz, 2019). Broadly there are two approaches: sequential co-design
or coupled co-design (Fathy et al., 2001; Peters et al., 2009). The best choice depends on
the degree of interaction, or coupling, between various sub-systems. If the coupling is strong
a coupled co-design approach is necessary to achieve the best performance.
Though there are a number of effective optimal-control libraries, they tend to assume that
they are on top of the modeling stack. They frame every optimization problem as if it were a
pure optimal-control problem, and hence are best suited to be used in a sequential co-design
style. This poses large challenges when expanding to tightly-coupled problems, where the
interactions between the static and dynamic systems are very strong.
Dymos provides a set of unique capabilities that make coupled co-design possible via efficient
gradient-based optimization methods. It provides differentiated time-integration schemes that
can generate transient models from user provided ODEs, along with APIs that enable users to
couple these transient models with other models to form the co-design system while carrying
the differentiation through that coupling. It also supports efficient differentiation of DAEs that
include implicit relationships, which allows for a much broader set of possible ways to pose
transient models. These two features combined make Dymos capable of handling coupled
co-design problems in a manner that is more efficient than a pure optimal-control approach.

Selected applications of Dymos

Dymos has been used to demonstrate the coupling of flight dynamics and subsystem thermal
constraints in electrical aircraft applications (Falck et al., 2017; Hendricks et al., 2020).
NASA’s X-57 “Maxwell” is using Dymos for mission planning to maximize data collection
while abiding the limits of battery storage capacity and subsystem temperatures (Schnulo et
al., 2018, 2019). Other authors have used Dymos to perform studies of aircraft acoustics
(Ingraham et al., 2020) and the design of supersonic aircraft with thermal fuel management
systems (Jasa et al., 2018).

Optimal-control example: Brachistochrone

As a simple use case of Dymos, consider the classic brachistochrone optimal-control problem.
There is a bead sliding along a frictionless wire strung between two points of different heights,
and we seek the shape of the wire such that the bead travels from start to finish in the shortest
time. The time-varying control is the angle of the wire at each point in time and there are no
design parameters, which makes this a pure optimal-control problem.

import numpy as np
import openmdao.api as om
import dymos as dm
import matplotlib.pyplot as plt

First define a system which computes the equations of motion
class BrachistochroneEOM(om.ExplicitComponent):

def initialize(self):
self.options.declare('num_nodes', types=int)

def setup(self):
nn = self.options['num_nodes']

Inputs

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

6

https://doi.org/10.21105/joss.02809

self.add_input('v', val=np.zeros(nn), units='m/s', desc='velocity')
self.add_input('theta', val=np.zeros(nn), units='rad',

desc='angle of wire')
self.add_output('xdot', val=np.zeros(nn), units='m/s',

desc='x rate of change')
self.add_output('ydot', val=np.zeros(nn), units='m/s',

desc='y rate of change')
self.add_output('vdot', val=np.zeros(nn), units='m/s**2',

desc='v rate of change')

Ask OpenMDAO to compute the partial derivatives using complex-step
with a partial coloring algorithm for improved performance
self.declare_partials(of='*', wrt='*', method='cs')
self.declare_coloring(wrt='*', method='cs', show_summary=True)

def compute(self, inputs, outputs):
v, theta = inputs.values()
outputs['vdot'] = 9.80665 * np.cos(theta)
outputs['xdot'] = v * np.sin(theta)
outputs['ydot'] = -v * np.cos(theta)

p = om.Problem()

Define a Trajectory object
traj = p.model.add_subsystem('traj', dm.Trajectory())

Define a Dymos Phase object with GaussLobatto Transcription
tx = dm.GaussLobatto(num_segments=10, order=3)
phase = dm.Phase(ode_class=BrachistochroneEOM, transcription=tx)

traj.add_phase(name='phase0', phase=phase)

Set the time options
phase.set_time_options(fix_initial=True,

duration_bounds=(0.5, 10.0))
Set the state options
phase.add_state('x', rate_source='xdot',

fix_initial=True, fix_final=True)
phase.add_state('y', rate_source='ydot',

fix_initial=True, fix_final=True)
phase.add_state('v', rate_source='vdot',

fix_initial=True, fix_final=False)
Define theta as a control.
phase.add_control(name='theta', units='rad',

lower=0, upper=np.pi)
Minimize final time.
phase.add_objective('time', loc='final')

Set the driver.
p.driver = om.ScipyOptimizeDriver()

Allow OpenMDAO to automatically determine total
derivative sparsity pattern.
This works in conjunction with partial derivative
coloring to give a large speedup
p.driver.declare_coloring()

Setup the problem
p.setup()

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

7

https://doi.org/10.21105/joss.02809

Now that the OpenMDAO problem is setup, we can guess the
values of time, states, and controls.
p.set_val('traj.phase0.t_duration', 2.0)

States and controls here use a linearly interpolated
initial guess along the trajectory.
p.set_val('traj.phase0.states:x',

phase.interpolate(ys=[0, 10], nodes='state_input'),
units='m')

p.set_val('traj.phase0.states:y',
phase.interpolate(ys=[10, 5], nodes='state_input'),
units='m')

p.set_val('traj.phase0.states:v',
phase.interpolate(ys=[0, 5], nodes='state_input'),
units='m/s')

constant initial guess for control
p.set_val('traj.phase0.controls:theta', 90, units='deg')

Run the driver to solve the problem and generate default plots of
state and control values vs time
dm.run_problem(p, make_plots=True, simulate=True)

Additional custom plot of y vs x to show the actual wire shape
fig, ax = plt.subplots(figsize=(6.4, 3.2))
x = p.get_val('traj.phase0.timeseries.states:x', units='m')
y = p.get_val('traj.phase0.timeseries.states:y', units='m')
ax.plot(x,y, marker='o')
ax.set_xlabel('x (m)')
ax.set_ylabel('y (m)')
fig.savefig('brachistochone_yx.png', bbox_inches='tight')

The built-in plotting utility in Dymos will plot all relevant quantities vs time:

The more traditional way to view the brachistochrone solution is to view the actual shape of
the wire (i.e. y vs x):

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

8

https://doi.org/10.21105/joss.02809

Figure 4: Brachistochrone Solution: y as a function of x

Coupled co-design example: Designing a cannonball

This co-design example seeks to find the best size cannonball to maximize range, considering
aerodynamic drag subject to a limit on initial kinetic energy. Given the same kinetic energy, a
lighter ball will go faster, and hence farther, if aerodynamic drag is ignored. Heavier cannon-
balls will have more inertia to counteract drag. There is a balance between these two effects,
which the optimizer seeks to find.
Here the static calculations are to find the mass and frontal area of the cannonball, given
its radius. Then the ODE takes the mass and area as inputs and via Dymos can compute
the total range. For demonstration purposes the trajectory is broken up into an ascent and
descent phase, with the break being set up exactly at the apogee of the flight path.

import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

import openmdao.api as om

import dymos as dm
from dymos.models.atmosphere.atmos_1976 import _USatm1976Data as USatm1976Data

CREATE an atmosphere interpolant
english_to_metric_rho = om.unit_conversion('slug/ft**3', 'kg/m**3')[0]
english_to_metric_alt = om.unit_conversion('ft', 'm')[0]
rho_interp = interp1d(np.array(USatm1976Data.alt*english_to_metric_alt, dtype=complex),

np.array(USatm1976Data.rho*english_to_metric_rho, dtype=complex), kind='linear')

class CannonballSize(om.ExplicitComponent):
"""
Static calculations performed before the dynamic model
"""

def setup(self):
self.add_input(name='radius', val=1.0,

desc='cannonball radius', units='m')
self.add_input(name='density', val=7870.,

desc='cannonball density', units='kg/m**3')

self.add_output(name='mass', shape=(1,),
desc='cannonball mass', units='kg')

self.add_output(name='area', shape=(1,),
desc='aerodynamic reference area', units='m**2')

self.declare_partials(of='*', wrt='*', method='cs')

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

9

https://doi.org/10.21105/joss.02809

def compute(self, inputs, outputs):
radius = inputs['radius']
rho = inputs['density']

outputs['mass'] = (4/3.) * rho * np.pi * radius ** 3
outputs['area'] = np.pi * radius ** 2

class CannonballODE(om.ExplicitComponent):
"""
Cannonball ODE assuming flat earth and accounting for air resistance
"""

def initialize(self):
self.options.declare('num_nodes', types=int)

def setup(self):
nn = self.options['num_nodes']

static parameters
self.add_input('mass', units='kg')
self.add_input('area', units='m**2')

time varying inputs
self.add_input('alt', units='m', shape=nn)
self.add_input('v', units='m/s', shape=nn)
self.add_input('gam', units='rad', shape=nn)

state rates
self.add_output('v_dot', shape=nn, units='m/s**2')
self.add_output('gam_dot', shape=nn, units='rad/s')
self.add_output('h_dot', shape=nn, units='m/s')
self.add_output('r_dot', shape=nn, units='m/s')
self.add_output('ke', shape=nn, units='J')

Ask OpenMDAO to compute the partial derivatives using complex-step
with a partial coloring algorithm for improved performance
self.declare_partials('*', '*', method='cs')
self.declare_coloring(wrt='*', method='cs')

def compute(self, inputs, outputs):

gam = inputs['gam']
v = inputs['v']
alt = inputs['alt']
m = inputs['mass']
S = inputs['area']

CD = 0.5 # good assumption for a sphere
GRAVITY = 9.80665 # m/s**2

handle complex-step gracefully from the interpolant
if np.iscomplexobj(alt):

rho = rho_interp(inputs['alt'])
else:

rho = rho_interp(inputs['alt']).real

q = 0.5*rho*inputs['v']**2
qS = q * S

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

10

https://doi.org/10.21105/joss.02809

D = qS * CD
cgam = np.cos(gam)
sgam = np.sin(gam)
outputs['v_dot'] = - D/m-GRAVITY*sgam
outputs['gam_dot'] = -(GRAVITY/v)*cgam
outputs['h_dot'] = v*sgam
outputs['r_dot'] = v*cgam
outputs['ke'] = 0.5*m*v**2

if __name__ == "__main__":

p = om.Problem()

###################################
Co-design part of the model,
static analysis outside of Dymos
###################################
static_calcs = p.model.add_subsystem('static_calcs', CannonballSize())
static_calcs.add_design_var('radius', lower=0.01, upper=0.10,

ref0=0.01, ref=0.10)

p.model.connect('static_calcs.mass', 'traj.parameters:mass')
p.model.connect('static_calcs.area', 'traj.parameters:area')

traj = p.model.add_subsystem('traj', dm.Trajectory())
Declare parameters that will be constant across
the two phases of the trajectory, so we can connect to it only once
traj.add_parameter('mass', units='kg', val=0.01, dynamic=False)
traj.add_parameter('area', units='m**2', dynamic=False)

tx = dm.Radau(num_segments=5, order=3, compressed=True)
ascent = dm.Phase(transcription=tx, ode_class=CannonballODE)
traj.add_phase('ascent', ascent)

###################################
first phase: ascent
###################################
All initial states except flight path angle are fixed
ascent.add_state('r', units='m', rate_source='r_dot',

fix_initial=True, fix_final=False)
ascent.add_state('h', units='m', rate_source='h_dot',

fix_initial=True, fix_final=False)
ascent.add_state('v', units='m/s', rate_source='v_dot',

fix_initial=False, fix_final=False)
Final flight path angle is fixed (
we will set it to zero so that the phase ends at apogee)
ascent.add_state('gam', units='rad', rate_source='gam_dot',

fix_initial=False, fix_final=True)
ascent.set_time_options(fix_initial=True, duration_bounds=(1, 100),

duration_ref=100, units='s')

ascent.add_parameter('mass', units='kg', val=0.01, dynamic=False)
ascent.add_parameter('area', units='m**2', dynamic=False)

Limit the initial muzzle energy to create a well posed problem
with respect to cannonball size and initial velocity
ascent.add_boundary_constraint('ke', loc='initial', units='J',

upper=400000, lower=0, ref=100000)

###################################

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

11

https://doi.org/10.21105/joss.02809

second phase: descent
###################################
tx = dm.GaussLobatto(num_segments=5, order=3, compressed=True)
descent = dm.Phase(transcription=tx, ode_class=CannonballODE)
traj.add_phase('descent', descent)

All initial states and time are free so their
values can be linked to the final ascent values
Final altitude is fixed to 0 to ensure final impact on the ground
descent.add_state('r', units='m', rate_source='r_dot',

fix_initial=False, fix_final=False)
descent.add_state('h', units='m', rate_source='h_dot',

fix_initial=False, fix_final=True)
descent.add_state('gam', units='rad', rate_source='gam_dot',

fix_initial=False, fix_final=False)
descent.add_state('v', units='m/s', rate_source='v_dot',

fix_initial=False, fix_final=False)
descent.set_time_options(initial_bounds=(.5, 100), duration_bounds=(.5, 100),

duration_ref=100, units='s')

descent.add_parameter('mass', units='kg', val=0.01, dynamic=False)
descent.add_parameter('area', units='m**2', dynamic=False)

Link Phases (link time and all state variables)
traj.link_phases(phases=['ascent', 'descent'], vars=['*'])

maximize range
descent.add_objective('r', loc='final', ref=-1.0)

p.driver = om.pyOptSparseDriver()
p.driver.options['optimizer'] = 'SLSQP'
p.driver.declare_coloring()

Finish Problem Setup
p.setup()

Set Initial guesses for static dvs and ascent
p.set_val('static_calcs.radius', 0.05, units='m')
p.set_val('traj.ascent.t_duration', 10.0)

p.set_val('traj.ascent.states:r',
ascent.interpolate(ys=[0, 100], nodes='state_input'))

p.set_val('traj.ascent.states:h',
ascent.interpolate(ys=[0, 100], nodes='state_input'))

p.set_val('traj.ascent.states:v',
ascent.interpolate(ys=[200, 150], nodes='state_input'))

p.set_val('traj.ascent.states:gam',
ascent.interpolate(ys=[25, 0], nodes='state_input'), units='deg')

more intitial guesses for descent
p.set_val('traj.descent.t_initial', 10.0)
p.set_val('traj.descent.t_duration', 10.0)

p.set_val('traj.descent.states:r',
descent.interpolate(ys=[100, 200], nodes='state_input'))

p.set_val('traj.descent.states:h',
descent.interpolate(ys=[100, 0], nodes='state_input'))

p.set_val('traj.descent.states:v',
descent.interpolate(ys=[150, 200], nodes='state_input'))

p.set_val('traj.descent.states:gam',

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

12

https://doi.org/10.21105/joss.02809

descent.interpolate(ys=[0, -45], nodes='state_input'), units='deg')

dm.run_problem(p, simulate=True, make_plots=True)

fig, ax = plt.subplots()
x0 = p.get_val('traj.ascent.timeseries.states:r', units='m')
y0 = p.get_val('traj.ascent.timeseries.states:h', units='m')
x1 = p.get_val('traj.descent.timeseries.states:r', units='m')
y1 = p.get_val('traj.descent.timeseries.states:h', units='m')
tab20 = plt.cm.get_cmap('tab20').colors
ax.plot(x0,y0, marker='o', label='ascent', color=tab20[0])
ax.plot(x1,y1, marker='o', label='descent', color=tab20[1])
ax.legend(loc='best')
ax.set_xlabel('range (m)')
ax.set_ylabel('height (m)')
fig.savefig('cannonball_hr.png', bbox_inches='tight')

The built-in plotting in Dymos will give time evolutions of all the time varying quantities. For
example, these are the trajectories for the range and height:

A more natural way to view the solution is to consider height vs range:

Figure 5: Cannonball Solution: height vs time

The parabolic trajectory is slightly skewed due to the effect of air resistance slowing down the
cannonball so it is moving slower during the descent than the ascent.

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

13

https://doi.org/10.21105/joss.02809

Acknowledgements

Dymos was developed with funding from NASA’s Transformational Tools and Technologies
(T 3) Project.

References

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi
– A software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11, 1–36. https://doi.org/10.1007/s12532-018-0139-4

Falck, R. D., Chin, J. C., Schnulo, S. L., Burt, J. M., & Gray, J. S. (2017). Trajec-
tory Optimization of Electric Aircraft Subject to Subsystem Thermal Constraints. 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. https://doi.org/
10.2514/6.2017-4002

Fathy, H. K., Reyer, J. A., Papalambros, P. Y., & Ulsov, A. G. (2001). On the coupling
between the plant and controller optimization problems. Proceedings of the 2001 American
Control Conference. https://doi.org/10.1109/ACC.2001.946008

Garcia-Sanz, M. (2019). Control co-design: An engineering game changer. Advanced Control
for Applications, 1(1), e18. https://doi.org/10.1002/adc2.18

Garg, D., Patterson, M., Darby, C., Francolin, C., Huntington, G., Hager, W., & Rao, A.
(2009). Direct trajectory optimization and costate estimation of general optimal control
problems using a radau pseudospectral method. AIAA Guidance, Navigation, and Control
Conference. https://doi.org/10.2514/6.2009-5989

Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Review, 47, 99–131. https://doi.org/10.1137/
S0036144504446096

Gray, J. S., Hearn, T. A., Moore, K. T., Hwang, J., Martins, J., & Ning, A. (2014). Automatic
Evaluation of Multidisciplinary Derivatives Using a Graph-Based Problem Formulation in
OpenMDAO. 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.
https://doi.org/doi:10.2514/6.2014-2042

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019).
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and op-
timization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https:
//doi.org/10.1007/s00158-019-02211-z

Griewank, A. (2003). A mathematical view of automatic differentiation. Acta Numerica,
12(1), 321–398. https://doi.org/10.1017/S0962492902000132

Hendricks, E. S., Aretskin-Hariton, E. D., Ingraham, D. J., Gray, J. S., Schnulo, S. L., Chin,
J. C., Falck, R. D., & Hall, D. L. (2020). Multidisciplinary optimization of an electric
quadrotor urban air mobility aircraft. AIAA Aviation 2020 Forum. https://doi.org/10.
2514/6.2020-3176

Herman, A. L., & Conway, B. A. (1996). Direct optimization using collocation based on
high-order Gauss-Lobatto quadrature rules. Journal of Guidance, Control, and Dynamics,
19(3), 592–599. https://doi.org/10.2514/3.21662

Hwang, J. T., & Martins, J. R. R. A. (2018). A computational architecture for coupling
heterogeneous numerical models and computing coupled derivatives. ACM Transactions
on Mathematical Software, 44(4), Article 37. https://doi.org/10.1145/3182393

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

14

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.2514/6.2017-4002
https://doi.org/10.2514/6.2017-4002
https://doi.org/10.1109/ACC.2001.946008
https://doi.org/10.1002/adc2.18
https://doi.org/10.2514/6.2009-5989
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/doi:10.2514/6.2014-2042
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1017/S0962492902000132
https://doi.org/10.2514/6.2020-3176
https://doi.org/10.2514/6.2020-3176
https://doi.org/10.2514/3.21662
https://doi.org/10.1145/3182393
https://doi.org/10.21105/joss.02809

Ingraham, D., Falck, R., & Gray, J. S. (2020). Blade and trajectory optimization of a propeller
-driven electric aircraft with acoustic constraints. AIAA Aviation 2020 Forum. https:
//doi.org/10.2514/6.2020-3141

Jasa, J. P., Mader, C. A., & Martins, J. (2018). Trajectory optimization of a supersonic
aircraft with a thermal fuel management system. 2018 Multidisciplinary Analysis and
Optimization Conference. https://doi.org/10.2514/6.2018-3884

Kenway, G. K., Mader, C. A., He, P., & Martins, J. R. (2019). Effective adjoint approaches
for computational fluid dynamics. Progress in Aerospace Sciences, 110, 100542. https:
//doi.org/10.1016/j.paerosci.2019.05.002

Mader, C. A., Martins, J. R., Alonso, J. J., & Van Der Weide, E. (2008). ADjoint: An
approach for the rapid development of discrete adjoint solvers. AIAA Journal, 46(4),
863–873. https://doi.org/doi:10.2514/1.29123

Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary design optimization: A survey
of architectures. AIAA Journal, 51(9), 2049–2075. https://doi.org/10.2514/1.J051895

Martins, J. R. R. A., Sturdza, P., & Alonso, J. J. (2003). The complex-step derivative
approximation. ACM Transactions on Mathematical Software, 29(3), 245–262. https:
//doi.org/10.1145/838250.838251

Paris, S., Riehl, J., & Sjauw, W. (2006). Enhanced procedures for direct trajectory optimiza-
tion using nonlinear programming and implicit integration. In AIAA/AAS astrodynamics
specialist conference and exhibit. https://doi.org/10.2514/6.2006-6309

Patterson, M. A., & Rao, A. V. (2014). GPOPS-II: A MATLAB software for solving multiple-
phase optimal control problems using hp-adaptive gaussian quadrature collocation methods
and sparse nonlinear programming. ACM Transactions on Mathematical Software, 41(1).
https://doi.org/10.1145/2558904

Peters, D. L., Papalambros, P. Y., & Ulsoy, A. G. (2009). On Measures of Coupling Between
the Artifact and Controller Optimal Design Problems. International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, 1363–
1372. https://doi.org/10.1115/DETC2009-86868

Schnulo, S. L., Hall, D. L., & Jeffrey C, C. (2019). Further development and validation
of NASA x-57 maxwell mission planning tool for mods III and IV. AIAA Propulsion and
Energy 2019 Forum. https://doi.org/10.2514/6.2019-4491

Schnulo, S. L., Jeff Chin, R. D. F., Gray, J. S., Papathakis, K. V., Clarke, S. C., Reid,
N., & Borer, N. K. (2018, June). Development of a Multi-Segment Mission Planning
Tool for SCEPTOR X-57. 2018 Multidisciplinary Analysis and Optimization Conference.
https://doi.org/10.2514/6.2018-3738

Seywald, H. (1994). Trajectory optimization based on differential inclusion (revised). Journal
of Guidance, Control, and Dynamics, 17(3), 480–487. https://doi.org/10.2514/3.21224

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., … Contributors, S. 1. 0. (2020). SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Wu, N., Kenway, G., Mader, C. A., Jasa, J., & Martins, J. R. R. A. (2020). pyOptSparse:
A Python framework for large-scale constrained nonlinear optimization of sparse systems.
Journal of Open Source Software, 5(54), 2564. https://doi.org/10.21105/joss.02564

Falck et al., (2021). dymos: A Python package for optimal control of multidisciplinary systems. Journal of Open Source Software, 6(59), 2809.
https://doi.org/10.21105/joss.02809

15

https://doi.org/10.2514/6.2020-3141
https://doi.org/10.2514/6.2020-3141
https://doi.org/10.2514/6.2018-3884
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/doi:10.2514/1.29123
https://doi.org/10.2514/1.J051895
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.2514/6.2006-6309
https://doi.org/10.1145/2558904
https://doi.org/10.1115/DETC2009-86868
https://doi.org/10.2514/6.2019-4491
https://doi.org/10.2514/6.2018-3738
https://doi.org/10.2514/3.21224
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.21105/joss.02564
https://doi.org/10.21105/joss.02809

	Summary
	Difference between optimal-control and co-design
	ODE versus DAE
	The Dymos perspective on optimal control

	Choice of optimization algorithm
	Statement of Need
	Selected applications of Dymos
	Optimal-control example: Brachistochrone
	Coupled co-design example: Designing a cannonball

	Acknowledgements
	References

