
SLAM Toolbox: SLAM for the dynamic world
Steve Macenski1 and Ivona Jambrecic2

1 Open-Source Robotics Engineering Lead, Samsung Research 2 Software Engineering Intern, Simbe
RoboticsDOI: 10.21105/joss.02783

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @mosteo
• @carlosjoserg

Submitted: 13 August 2020
Published: 13 May 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Developments in the field of mobile robotics and autonomous driving have resulted in the use
of robots and vehicles in retail stores, hospitals, warehouses, on the roads, and on sidewalks.
These deployed areas are both dynamic and frequently massive in scale. The average size of a
Walmart store is over 16,000 m2 (Walmart, 2020) and a single square block in Chicago is over
21,000 m2 (Heramb, 2007). Retail and warehouse spaces can change drastically throughout
the year and the state of roadways can be changing by the hour. Much work has been made
to address changing environments in robot perception (Macenski, Tsai, et al., 2020), but less
has been built in open-source to represent maps of dynamic spaces.
For fully autonomous deployed systems to operate in these large and changing environments,
they require tools that can be used to accurately map an area specified for their operation,
update it over time, and scale to handle mapping of some of the largest indoor and outdoor
spaces imaginable. The field of Simultaneous Localization and Mapping (SLAM) aims to solve
this problem using a variety of sensor modalities, including: laser scanners, radars, cameras,
encoders, gps and IMUs. The most commonly used perception sensor used for localization and
mapping in industrial environments is the laser scanner (Chong et al., 2015). SLAM methods
using laser scanners are generally considered the most robust in the SLAM field and can
provide accurate positioning in the presence of dynamic obstacles and changing environments
(Cole & Newman, 2006).
Previously existing open-source laser scanner SLAM algorithms available to users in the pop-
ular Robot Operating System (ROS) include GMapping, Karto, Cartographer, and Hector.
However, few of these can build accurate maps of large spaces on the scale of the aver-
age Walmart store. Even fewer can do so in real-time using the mobile processor typically
found in mobile robot systems today. The only package that could accomplish the above was
Cartographer. However, it was abandoned by Google and it is no longer maintained.
We propose a new fully open-source ROS package, SLAM Toolbox, to solve this problem.
SLAM Toolbox builds on the legacy of Open Karto (Konolige et al., 2010), the open-source
library from SRI International, providing not only accurate mapping algorithms, but a variety of
other tools and improvements. SLAM Toolbox provides multiple modes of mapping depending
on need, synchronous and asynchronous, utilities such as kinematic map merging, a localization
mode, multi-session mapping, improved graph optimization, substantially reduced compute
time, and prototype lifelong and distributed mapping applications.
This package, slam_toolbox is open-source under an LGPLv2.1 at https://github.com/
SteveMacenski/slam_toolbox.git and is available in every current ROS distribution. It was
also selected as the new default SLAM vendor in ROS 2, the second generation of robot
operating systems, replacing GMapping. SLAM Toolbox was integrated into the new ROS 2
Navigation2 project, providing real-time positioning in dynamic environments for autonomous
navigation (Macenski, Martín, et al., 2020). It has been shown to map spaces as large as
24,000 m2, or 250,000 ft2, in real-time by non-expert technicians. An example map can be
seen in Figure 1.

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

1

https://doi.org/10.21105/joss.02783
https://github.com/openjournals/joss-reviews/issues/2783
https://github.com/SteveMacenski/slam_toolbox
https://doi.org/10.5281/zenodo.4749721
http://arfon.org/
https://github.com/mosteo
https://github.com/carlosjoserg
http://creativecommons.org/licenses/by/4.0/
https://github.com/SteveMacenski/slam_toolbox.git
https://github.com/SteveMacenski/slam_toolbox.git
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


Figure 1: Retail store map created using SLAM Toolbox (Macenski, 2019).

Statement of Need

This software package provides an approach for multi-session mapping and localization. It
also utilizes modern graph-optimization techniques and provides first of its kind pose-graph
manipulation tools and demo applications. Below we discuss related work and how slam_to
olbox is meeting a currently unmet need in the community.

Related Work

SLAM algorithms can be classified into two groups: the earlier algorithms that use the Bayes-
based filter approaches (Thrun et al., 2005), and newer graph-based methods (Thrun &
Montemerlo, 2006). Significant filter-based implementations available as ROS packages are
GMapping (Grisetti et al., 2007) and HectorSLAM (Kohlbrecher et al., 2011). Cartogra-
pher (Hess et al., 2016) and KartoSLAM (Konolige et al., 2010) are the major graph-based
implementations available.
GMapping is one of the most commonly used SLAM libraries, presented in 2007. It uses a
particle filter approach to SLAM for the purpose of building grid maps from 2D lidar data.
However, GMapping is not well suited for large spaces and fails to accurately close loops at
an industrial scale. Additionally, filter-based approaches cannot be easily reinitialized across
multiple sessions.
HectorSLAM relies on lidar scan matching and 3D navigation filter based on EKF state es-
timation. This method focuses on real-time robot pose estimation and generates 2D map
with high update rate. Unlike other mentioned methods, Hector does not use odometry data,
which can cause inaccurate pose and map updates when lidar scans arrive at a lower rate,
or when mapping large or featureless spaces. HectorSLAM however does not provide loop
closure capabilities, making it unsuitable for reliable mapping of large spaces or when using
laser scanners with low update rates.
KartoSLAM and Cartographer are both graph-based algorithms that store a graph of robot
poses and features. Graph-based algorithms have to maintain only the pose-graph, which

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

2

https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


usually makes it efficient in handling resources, especially while building maps of a large scale.
KartoSLAM uses Sparse Bundle Adjustment for loop-closure graph optimization. Cartogra-
pher consists of front-end, which is in charge of scan matching and building trajectory and
submaps, and back-end that does the loop closure procedure. The graph solver used in Cartog-
rapher is Google Ceres (Agarwal et al., n.d.). Cartographer provides pure localization mode,
when user has a satisfactory map for usage. It also provides data serialization for storing
processed submaps only. However, Cartographer has stopped maintenance and support from
Google and has been largely abandoned. Further, it fails to build suitable maps for annota-
tion and localization with other localization software packages on robotic platforms without
exceptional odometry. The software’s unusual complexity makes it challenging to modify or
resolve seemingly simple issues, making it not suitable for many applications.

Features

SLAM Toolbox is able to map spaces effectively using mobile Intel CPUs commonly found on
robots well in excess of 100,000 ft2. It can be done easily using untrained technicans typically
hired to deploy robot solutions or remotely using monitoring systems. Some applications have
been created to automatically map a space using SLAM Toolbox as well as paired with
exploration planners.
It can also serialize a current mapping session and deserialize it at a later time to continue
refining or expanding an existing map. This serialization saves the complete raw data and
pose-graph rather than submaps, as in Cartographer, allowing a variety of novel tools to be
developed and more accurate multi-session mapping. These utilities include manual pose-
graph manipulation, whereas a user can manually manipulate the pose-graph nodes and data
to rotate a map or assist in a challenging loop closure, shown in Figure 2. It also includes
kinematic map merging, the process of merging multiple serialized maps into a composite
map. A 3D visualizer plugin was also created to assist in utilization of these tools and the
core SLAM library capabilities. Many additional tools and utilities could be developed using
this representation as well.

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

3

https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


Figure 2: Pose-graph manipulation in progress to manually match a node’s laser scan to the map
(Macenski, 2019).

It provides 3 major operation modes and executables: synchronous mapping, asynchronous
mapping, and pure localization. Synchronous mapping provides the ability to map and localize
in a space keeping a buffer of measurements to add to the SLAM problem. This can be
advantageous when the quality of the map is of particular importance or when doing offline
processing. By contrast, the asynchronous mode will only process new measurements when
the last measurement is completed and the new update criteria are met. As a result, this
will never lag behind real-time when running complex loop closures. However, the map may
not include all valid measurements if processing the last one takes too long. This mode is
advantageous when the quality of real-time localization is of particular importance. Both of
these modes can be used for multi-session SLAM, the process of reloading a prior session and
continuing to refine the pose-graph. Figure 3 shows a map of a large office building created
by partially mapping in one session and completing the map in another session. This map has
multiple loop closures between the two datasets and was later used with the pure-localization
mode to navigate autonomously.
The pure localization mode cannot be used to persist changes in the environment. Instead,
it uses a rolling buffer of measurements in the current session and matches them against the
original session(s) measurements and pose-graph. The current session’s measurements will be
added to the pose-graph with new constraints and nodes in the graph. This allows changes
in the environment to be embraced to increase localization quality based on new features or
moved objects. Over time, the measurements in the rolling buffer will “expire” and be removed
from the pose-graph and localization problem, reverting the pose-graph to its original state for
that region. The authors refer to this process as elastic pose-graph deformation. An interesting
side effect is that the pure-localization mode can be used for effective lidar odometry when
paired with no prior mapping session data. It will simply match against its local buffer and
keep only a recent view of the environment, allowing lidar odometry to scale to infinite sized
spaces.

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

4

https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


Figure 3: Large office building map created using multiple SLAM sessions (Macenski, 2019).

Finally, many updates were made to the OpenKarto SLAM libary. The measurement match-
ing methods were restructured for a 10x speed-up enabling multi-threaded processing. The
provided Sparse Bundle Adjustment optimization interface was replaced with Google Ceres,
providing faster and more flexible optimization settings. Additionally, the optimizer interface
was turned into a run-time dynamically loaded plugin interface to allow future developers to
use the latest and greatest in optimization technologies without modifying the original code.
Serialization and deserializion support was enabled to allow for saving and reloading mapping
sessions. Finally, new processing modes and K-D tree search were developed to process mea-
surements to enable localization and multi-session mapping. Various smaller improvements
and optimizations were also made but excluded for brevity.

Robots Using slam_toolbox

SLAM Toolbox has been integrated, tested, and deployed on a number of robot platforms
across the world by both industry and researchers. It is also the default SLAM vendor for ROS
2.
A few known examples where SLAM Toolbox has been used or is being used are:

• Simbe Robotics’ Tally
• ROBOTIS’ Turtlebot3
• Samsung Research America and Russia’s research teams
• Rover Robotics’ Rover
• Pal Robotics ARI
• Intel’s Open Source Group
• Queensland University of Technology researchers

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

5

https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


• Robosynthesis’ EXTRM SC2.0
• Unbounded Robotics UBR-1
• Byte Robotics’ Platform
• Unmanned Life’s Platform
• MT Robot AG
• Magazino robot datasets
• 6 River Systems

Acknowledgements

We acknowledge this work was largely developed at Simbe Robotics and later continued open-
source support and development at Samsung Research.

References

Agarwal, S., Mierle, K., & Others. (n.d.). Ceres solver. http://ceres-solver.org
Chong, T. J., Tang, X. J., Leng, C. H., Yogeswaran, M., Ng, O. E., & Yu Zheng, C. (2015).

Sensor technologies and simultaneous localization and mapping (SLAM). Procedia Com-
puter Science, 76, 174–179. https://doi.org/10.1016/j.procs.2015.12.336

Cole, D. M., & Newman, P. M. (2006). Using laser range data for 3D SLAM in outdoor
environments. Proceedings - IEEE International Conference on Robotics and Automation,
2006, 1556–1563. https://doi.org/10.1109/ROBOT.2006.1641929

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46. https:
//doi.org/10.1109/tro.2006.889486

Heramb, C. (2007). Street and site plan design standards. City of Chicago.
Hess, W., Kohler, D., Rapp, H., & Andor, D. (2016). Real-time loop closure in 2D LIDAR

SLAM. 2016 IEEE International Conference on Robotics and Automation (ICRA), 1271–
1278. https://doi.org/10.1109/icra.2016.7487258

Kohlbrecher, S., von Stryk, O., Meyer, J., & Klingauf, U. (2011). A flexible and scalable SLAM
system with full 3D motion estimation. 2011 IEEE International Symposium on Safety,
Security, and Rescue Robotics, 155–160. https://doi.org/10.1109/ssrr.2011.6106777

Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., & Vincent, R. (2010).
Efficient sparse pose adjustment for 2D mapping. Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 22–29. https://doi.org/10.1109/IROS.2010.5649043

Macenski, S. (2019). On use of SLAM toolbox. ROSCon. https://doi.org/10.36288/
roscon2019-900903

Macenski, S., Martín, F., White, R., & Ginés Clavero, J. (2020). The marathon 2: A naviga-
tion system. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). https://doi.org/10.1109/iros45743.2020.9341207

Macenski, S., Tsai, D., & Feinberg, M. (2020). Spatio-temporal voxel layer: A view on robot
perception for the dynamic world. International Journal of Advanced Robotic Systems,
17(2). https://doi.org/10.1177/1729881420910530

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press.
ISBN: 0262201623 9780262201629

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

6

http://ceres-solver.org
https://doi.org/10.1016/j.procs.2015.12.336
https://doi.org/10.1109/ROBOT.2006.1641929
https://doi.org/10.1109/tro.2006.889486
https://doi.org/10.1109/tro.2006.889486
https://doi.org/10.1109/icra.2016.7487258
https://doi.org/10.1109/ssrr.2011.6106777
https://doi.org/10.1109/IROS.2010.5649043
https://doi.org/10.36288/roscon2019-900903
https://doi.org/10.36288/roscon2019-900903
https://doi.org/10.1109/iros45743.2020.9341207
https://doi.org/10.1177/1729881420910530
https://worldcat.org/isbn/0262201623%209780262201629
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783


Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-
scale mapping of urban structures. I. J. Robotic Res., 25, 403–429. https://doi.org/10.
1177/0278364906065387

Walmart. (2020). Walmart u.s. Our business. Walmart.

Macenski et al., (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source Software, 6(61), 2783. https://doi.org/10.
21105/joss.02783

7

https://doi.org/10.1177/0278364906065387
https://doi.org/10.1177/0278364906065387
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783

	Summary
	Statement of Need
	Related Work

	Features
	Robots Using slam_toolbox
	Acknowledgements
	References

