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Summary
ParaMonte (which stands for Parallel Monte Carlo) is a serial and MPI/Coarray-parallelized
library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-
dimensions, in particular, the posterior distributions of Bayesian models in data science, ma-
chine learning, and scientific inference. The ParaMonte library has been developed with the
design goal of unifying the automation, accessibility, high-performance, scalability, and
reproducibility of Monte Carlo simulations. The current implementation of the library in-
cludes ParaDRAM, a Parallel Delayed-Rejection Adaptive Metropolis Markov Chain Monte
Carlo sampler, accessible from a wide range of programming languages including C, C++, For-
tran, with a unified Application Programming Interface and simulation environment across all
supported programming languages. The ParaMonte library is MIT-licensed and is permanently
located and maintained at https://github.com/cdslaborg/paramonte.

Statement of need
Monte Carlo simulation techniques (Metropolis & Ulam, 1949), in particular, Markov Chain
Monte Carlo (MCMC) (Metropolis et al., 1953) are among the most popular methods of
quantifying uncertainty in scientific inference problems. Extensive work has been done over
the past decades to develop Monte Carlo simulation programming environments that aim
to partially or fully automate the problem of uncertainty quantification via Markov Chain
Monte Carlo simulations. Example open-source libraries in C/C++/Fortran include MCSim
in C (Bois, 2009), MCMCLib and QUESO (Prudencio & Schulz, 2012) libraries in C++, and
mcmcf90 in Fortran (Haario et al., 2006). These packages, however, mostly serve the users of
one particular programming language environment. Some can perform only serial simulations
while others are inherently parallelized. Furthermore, the majority of the existing packages
have significant dependencies on other external libraries. Such dependencies can potentially
make the build process of the packages extremely complex and arduous due to software
version incompatibilities, a phenomenon that has become known as the dependency-hell among
software developers.
The ParaMonte library presented in this work aims to address the aforementioned problems by
providing a standalone high-performance serial/parallel Monte Carlo simulation environment
with the following principal design goals:

• Full automation of the library’s build process and all Monte Carlo simulations to
ensure the highest level of user-friendliness of the library and minimal time investment
requirements for building the library as well as running and post-processing the Monte
Carlo simulations

• Interoperability of the core of the library with as many programming languages as
currently possible, including C, C++, Fortran, as well as MATLAB and Python via the
ParaMonte::MATLAB (Kumbhare & Shahmoradi, 2020a) and ParaMonte::Python
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(Shahmoradi et al., 2020) libraries

• High-Performance, meticulously-low-level implementation of the library that guar-
antees the fastest-possible Monte Carlo simulations without compromising the
reproducibility of the simulations or the extensive external reporting of the simulation
progress and results

• Parallelizability of all simulations via both MPI and PGAS/Coarray communication
paradigms while requiring zero-parallel-coding efforts from the user

• Zero external-library dependencies to ensure hassle-free library builds and Monte
Carlo simulation runs

• Fully-deterministic reproducibility and automatically-enabled restart functionality
for all ParaMonte simulations (up to 16 digits of decimal precision if requested by the
user)

• Comprehensive-reporting and post-processing of each simulation and its results as
well as their efficient compact storage in external files to ensure the reproducibility and
comprehensibility of the simulation results at any time in the future

The origins of ParaMonte
The ParaMonte library grew out of the need for a free user-friendly high-performance parallel
software for stochastic optimization, sampling, and integration problems in scientific inference
and Data Science applications. The project started in 2012 to aid the research goals of the
primary author of the package in the field of High Energy Astrophysics and Bioinformatics
(Osborne et al., 2020; Shahmoradi, 2013a, 2013b; Shahmoradi & Nemiroff, 2014; Shahmoradi
& Nemiroff, 2019; Shahmoradi & Nemiroff, 2015). It remained in private usage over the years
until summer 2020, when version 1.0 of the library was released as an open-source project for
public usage and contributions.
Many contemporary research problems are computationally demanding and require the analysis
of vast amounts of high-dimensional data by a community of non-computer-science domain
researchers who might be neither familiar with details of software dependencies, build processes,
and complexities nor even with the inner-workings of the various stochastic optimization and
sampling techniques. As such, since its inception, the ParaMonte library has been built upon
the two pillars of user-friendliness and high-performance.

The build process
The ParaMonte library is permanently located on GitHub and is available to view at: https:
//github.com/cdslaborg/paramonte. The build process of the library is fully automated. Ex-
tensive detailed instructions are also available on the documentation website of the library.
For the convenience of users, each versioned release of the library’s source code also includes
prebuilt, ready-to-use, copies of the library for x64 architecture on Windows, Linux, macOS,
in all supported programming languages, including C, C++, Fortran. These prebuilt libraries
automatically ship with the language-specific example codes and build scripts that fully auto-
mate the process of building and running the examples. Users can either adapt the example’s
source files and build scripts to their own needs or in more sophisticated scenarios, they can
simply link their applications against the supplied prebuilt library.
Where the prebuilt libraries cannot be used, users can readily call the Unix-Bash and Windows-
Batch build-scripts that are provided with the source code of the library to fully automate

Shahmoradi et al., (2021). ParaMonte: A high-performance serial/parallel Monte Carlo simulation library for C, C++, Fortran. Journal of
Open Source Software, 6(61), 2741. https://doi.org/10.21105/joss.02741

2

https://github.com/cdslaborg/paramonte
https://github.com/cdslaborg/paramonte
https://www.cdslab.org/paramonte/
https://doi.org/10.21105/joss.02741


the build process of the library. These build scripts have been developed to automate the
installation of any missing components that may be required for the successful build of the
library, including the cmake build software, the GNU C/C++/Fortran compilers, as well as
the MPI/Coarray libraries. All of these tasks are performed with the explicit permission
granted by the user. The ParaMonte build scripts are heavily inspired by the impressive
OpenCoarrays open-source software (Fanfarillo et al., 2014) developed and maintained by
the Sourcery Institute.

The ParaMonte samplers
The current implementation of the ParaMonte library includes the Parallel Delayed-Rejection
Adaptive Metropolis Markov Chain Monte Carlo (ParaDRAM) sampler (Kumbhare & Shah-
moradi, 2020b; Shahmoradi & Bagheri, 2020a, 2020b, 2020c), and several other samplers
whose development is in progress as of writing this manuscript. The ParaDRAM algorithm is
a variant of the DRAM algorithm of (Haario et al., 2006) and can be used in either serial or
parallel mode.
In brief, the ParaDRAM sampler continuously adapts the shape and scale of the proposal
distribution throughout the simulation to increase the efficiency of the sampler. This is in con-
trast to traditional MCMC samplers where the proposal distribution remains fixed throughout
the simulation. The ParaDRAM sampler provides a highly customizable MCMC simulation
environment whose complete description goes beyond the scope and limits of this manuscript.
All of these simulation specifications are, however, expensively explained and discussed on the
documentation website of the ParaMonte library. The description of all of these specifica-
tions are also automatically provided in the output *_report.txt files of every simulation
performed by the ParaMonte samplers.
Several additional more advanced samplers are also currently under development and are
scheduled for release in 2021.

Parallelism
Two modes of parallelism are currently implemented for all ParaMonte samplers,

• The Perfect Parallelism (multi-Chain): In this mode, independent instances of a partic-
ular ParaMonte sampler of choice run concurrently. Once all simulations are complete,
the sampler compares the output samples from all processors with each other to calcu-
late various statistics and to ensure that no evidence for a lack of convergence to the
target density exists in any of the output chains.

• The Fork-Join Parallelism (single-Chain): In this mode, a single processor is responsible
for collecting and dispatching information, generated by all processors, to construct the
full sample from the target density function.

For each parallel simulation in the Fork-Join mode, the ParaMonte samplers automatically
compute the speedup gained compared to the serial mode. The speedup for a wide range of
the number of processors is also automatically computed and reported in the output *_repo
rt.txt files that are automatically generated for all simulations. The processor contributions
to the construction of the final output sample are also reported along with all visited states
in the output *_chain.* files. Such information is particularly useful for finding the optimal
number of processors for a given problem at hand, by first running a short simulation to predict
the optimal number of processors from the sampler’s output information, followed by the full
production run using the optimal number of processors. For a comprehensive description and
algorithmic details see (Shahmoradi & Bagheri, 2020a, 2020c).
An illustration of the contributions of 512 Intel Xeon Phi 7250 processors to a ParaMonte-
ParaDRAM simulation parallelized via the Fork-Join paradigm. The predicted best-fit Geomet-

Shahmoradi et al., (2021). ParaMonte: A high-performance serial/parallel Monte Carlo simulation library for C, C++, Fortran. Journal of
Open Source Software, 6(61), 2741. https://doi.org/10.21105/joss.02741

3

http://www.sourceryinstitute.org/
https://www.cdslab.org/paramonte/
https://www.cdslab.org/paramonte/
https://doi.org/10.21105/joss.02741


ric distribution from the post-processing phase of the ParaDRAM simulation is shown by the
black line. The data used in this figure is automatically generated for each parallel simulation
performed via any of the ParaMonte samplers.
As we argue in (Shahmoradi & Bagheri, 2020a, 2020c) for the particular case of MCMC
simulations, the distribution of processor contributions to the construction of a final sample
from an objective function in the Fork-Join parallelism paradigm follows a Geometric curve.
subsection depicts the processor contributions to an example ParaDRAM simulation of a
variant of Himmelblau’s function. Superimposed on the distribution of processor contributions
is the Geometric fit to the data. subsection illustrates an example strong-scaling behavior of
the sampler and the predicted speedup by the sampler for a range of processor counts.
The exact strong scaling behavior of Fork-Join parallel simulations is highly dependent on the
sampling efficiency of the problem. For a fixed number of processors, the parallel efficiency of
the samplers monotonically increases toward the maximum theoretical speedup with decreas-
ing sampling efficiency. This theoretical maximum parallel speedup and the corresponding
predicted optimal number of processors are also computed for each parallel simulation and
reported in the final output *_report.txt files.
A comparison of the actual strong scaling behavior of an example ParaMonte-ParaDRAM
simulation from 1 to 1088 processors with the strong-scaling behavior predicted during the
post-processing phases of the corresponding individual ParaDRAM simulations. The data used
in this figure is automatically generated for each parallel simulation performed via any of the
ParaMonte samplers. The black dashed line represents the perfect parallelism.

Efficient compact storage of the output samples
Efficient continuous external storage of the output of Monte Carlo simulations is essential for
both post-processing of the results and the restart functionality of the simulations, should any
interruptions happen at runtime. However, as the number of dimensions or the complexity of
the target density increases, such external storage of the output can easily become a challenge
and a bottleneck in the speed of an otherwise high-performance sampler. Given the currently-
available computational technologies, input/ouput (IO) to external hard-drives can be 2-3
orders of magnitude slower than the Random Access Memory (RAM) storage.
To alleviate the effects of such external-IO speed bottlenecks, the ParaMonte samplers have
been devised to carefully store the resulting samples in a small compact, yet ASCII human-
readable format in external output files. This compact storage, as opposed to the verbose (or
in the case of the ParaDRAM sampler, the Markov-chain) storage format, leads to significant
speedup of the simulations while requiring 4-100 times less external memory to store the output
samples in the external output files. The exact amount of reduction in the external memory
usage depends on the runtime sampling efficiency of the samplers. Additionally, the format of
output files can be set by the user to binary, further reducing the memory foot-print of the
simulations while increasing the simulation speed. The implementation details of this compact
storage format are extensively discussed in (Shahmoradi & Bagheri, 2020a, 2020c).

Restart functionality
Each ParaMonte sampler is automatically capable of restarting an existing interrupted simu-
lation, whether in serial or parallel. All that is required is to rerun the interrupted simulation
with the same prefix for the simulation output file names. The ParaMonte samplers auto-
matically detect the presence of an incomplete simulation in the output files and restart the
simulation from where it was left off.
Furthermore, if the user sets the seed of the random number generator of the sampler before
running the simulation, the ParaMonte samplers are capable of regenerating the same output
sample that would have been produced if the simulation had not been interrupted in the first
place. Such fully-deterministic reproducibility into-the-future is guaranteed with 16 digits
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of decimal precision for the results of any ParaMonte simulation, whether serial or in parallel.
To our knowledge, this is a unique feature of the ParaMonte library that does not appear to
exist in any of the contemporary libraries for Monte Carlo simulations.

The ParaMonte Application Programming Interface
Special care has been taken to develop highly-similar (if not the same) Application Program-
ming Interface (API) to the ParaMonte library samplers across all supported programming
languages. Ensuring backward-compatibility has been also one of the high priorities in the
development of the library and will remain a priority for any future development and expansion
of the project.
The project currently uses semantic versioning to readily inform the users about the backward-
compatibility of each release. This semantic versioning, however, only applies to the Para-
Monte samplers’ API. Conversely, the API to the foundational procedures of the ParaMonte
kernel tend to be dynamic and subject to changes without incrementing the library’s major
version. This is line with the primary purpose of the library as a Monte Carlo optimization
and sampling toolbox.
Nevertheless, the kernel documentation is well developed and accessible to all, including the
end-users, should they decide to use any of the basic routines in the library beyond the
samplers. The kernel API documentation is permanently available on GitHub at its dedicated
repository: https://cdslaborg.github.io/paramonte-kernel-doc/html/ and is accessible from
the ParaMonte’s main documentation portal.

Tests and code coverage
The entire kernel routines of the ParaMonte library are currently tested with over 866 individual
tests. Out of these, 510 test units currently cover and verify the functionalities of the basic
building-block routines of the library and 156 tests verify the semantics and different aspects
of the ParaMonte samplers built on top of the basic routines.
The code coverage report analyses of the ParaMonte kernel library can be generated for a wide
range of input build configurations. For example, corresponding to each programming language
(C, C++, Fortran, MATLAB, Python, R, …), a separate code coverage report for the kernel
routines can be generated. Similarly, different library builds (debug, testing, release), library
types (static, dynamic), and memory allocation schemes (stack or heap) can lead to different
code coverage reports. This is primarily because the kernel routines heavily utilize compiler
preprocessor directives to accommodate the support for multiple programming languages,
Operating Systems and architectures, as well as multiple parallelism paradigms.
Among all build configurations, however, the single most important specification that yields
the largest differences in code coverage reports is the parallelism paradigm (serial, MPI, and
Coarray parallelism). The code coverage reports for the serial, MPI, and Coarray modes are
remarkably different since each parallelism paradigm activates a different set of codes in the
ParaMonte kernel routines.
Thus, with each tagged release of the library, the code coverage reports for the three parallelism
paradigms are also generated and stored in a separate repository dedicated to the code coverage
analyses of the ParaMonte library. This repository is permanently located on GitHub at:
https://www.cdslab.org/paramonte/notes/codecov/ and the reports are automatically and
conveniently accessible from the ParaMonte documentation website.
The current set of 866 unit tests in version 1.5.0 release of the ParaMonte library collectively
cover 47565 out of 48384 lines of code (∼ 98% line coverage) and 4467 out of 4476 procedures
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(∼ 100% function coverage) in the library’s kernel for the three serial, MPI, and Coarray
parallelism paradigms.

Documentation and Repository
Extensive documentation and examples in C, C++, Fortran (as well as other programming
languages) are available on the documentation website of the library at: https://www.cdslab.
org/paramonte/. The ParaMonte library is MIT-licensed and is permanently located and
maintained at https://github.com/cdslaborg/paramonte.
A high number of comments in a codebase are frequently indicative of an organized well-
documented project and considered a sign of a helpful and disciplined development team. As
of January 2021, comments approximately make up 31% of the entire ParaMonte codebase.
Currently, the Open Hub indexer service ranks the ParaMonte project’s level of documentation
as “impressive” and among the top 10% of all projects in the same category on Open Hub.
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