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Introduction

Statistical modeling, and the building of complex modeling pipelines, is a cornerstone of
modern data science. Most experienced data scientists rely on high-level open source modeling
toolboxes - such as sckit-learn (Buitinck et al., 2013; Pedregosa et al., 2011) (Python); Weka
(Holmes et al., 1994) (Java); mlr (Bischl et al., 2016) and caret (Kuhn, 2008) (R) - for quick
blueprinting, testing, and creation of deployment-ready models. They do this by providing a
common interface to atomic components, from an ever-growing model zoo, and by providing
the means to incorporate these into complex work-flows. Practitioners are wanting to build
increasingly sophisticated composite models, as exemplified in the strategies of top contestants
in machine learning competitions such as Kaggle.
MLJ (Machine Learning in Julia) (A. Blaom, 2020b) is a toolbox written in Julia that pro-
vides a common interface and meta-algorithms for selecting, tuning, evaluating, composing
and comparing machine model implementations written in Julia and other languages. More
broadly, the MLJ project hopes to bring cohesion and focus to a number of emerging and
existing, but previously disconnected, machine learning algorithms and tools of high quality,
written in Julia. A welcome corollary of this activity will be increased cohesion and synergy
within the talent-rich communities developing these tools.
In addition to other novelties outlined below, MLJ aims to provide first-in-class model com-
position capabilities. Guiding goals of the MLJ project have been usability, interoperability,
extensibility, code transparency, and reproducibility.

Why Julia?

Nowadays, even technically competent users of scientific software will prototype solutions
using a high-level language such as python, R, or MATLAB. However, to achieve satisfactory
performance, such code typically wraps performance critical algorithms written in a second
low-level language, such as C or FORTRAN. Through its use of an extensible, hierarchical
system of abstract types, just-in-time compilation, and by replacing object-orientation with
multiple dispatch, Julia solves the ubiquitous “two language problem” (Bezanson et al., 2017).
With less technical programming knowledge, experts in a domain of application can get under
the hood of machine learning software to broaden its applicability, and innovation can be
accelerated through a dramatically reduced software development cycle.
As an example of the productivity boost provided by the single-language paradigm, we cite
the DifferentialEquations.jl package (Rackauckas & Nie, 2017), which, in a few short years
of development by a small team of domain experts, became the best package in its class
(Rackauckas, 2018).
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Another major advantage of a single-language solution is the ability to automatically differen-
tiate (AD) functions from their code representations. The Flux.jl package (Innes, 2018), for
example, already makes use of AD to allow unparalleled flexibility in neural network design.
As a new language, Julia is high-performance computing-ready, and its superlative meta-
programming features allow developers to create domain-specific syntax for user interaction.

Novelties

Composability. In line with current trends in “auto-ML”, MLJ’s design is largely predicated on
the importance of model composability. Composite models share all the behavior of regular
models, constructed using a new flexible “learning networks” syntax. Unlike the toolboxes
cited above, MLJ’s composition syntax is flexible enough to define stacked models, with out-
of-sample predictions for the base learners, as well as more routine linear pipelines, which
can include target transformations that are learned. As in mlr, hyper-parameter tuning is
implemented as a model wrapper.
A unified approach to probabilistic predictions. In MLJ, probabilistic prediction is treated
as a first class feature, leveraging Julia’s type system. In particular, unnecessary case-
distinctions, and ambiguous conventions regarding the representation of probabilities, are
avoided.
Scientific types To help users focus less on data representation (e.g., Float32, DataFr
ame) and more on the intended purpose or interpretation of data, MLJ articulates model
data requirements using scientific types (Anthony Blaom and collaborators, 2019), such as
“continuous”, “ordered factor” or “table”.
Connecting models directly to arbitrary data containers. A user can connect models
directly to tabular data in a manifold of in-memory and out-of-memory formats by using a
universal table interface provided by the Tables.jl package (Quinn, 2020).
Finding the right model. A model registry gives the user access to model metadata without
the need to actually load code defining the model implementation. This metadata includes
the model’s data requirements, for example, as well as a load path to enable MLJ to locate the
model interface code. Users can readily match models to machine learning tasks, facilitating
searches for an optimal model, a search that can be readily automated.
Tracking classes of categorical variables. Finally, with the help of scientific types and
the CategoricalArrays.jl package (Bouchet-Valat, 2014), users are guided to create safe rep-
resentations of categorical data, in which the complete pool of possible classes is embedded
in the data representation, and classifiers preserve this information when making predictions.
This avoids a pain-point familiar in frameworks that simply recast categorical data using inte-
gers: evaluating a classifier on the test target, only to find the test data includes classes not
seen in the training data. Preservation of the original labels for these classes also facilitates
exploratory data analysis and interpretability.

Scientific types

A scientific type is an ordinary Julia type (generally without instances) reserved for indicating
how some data should be interpreted. Some of these types are shown in Figure 1.
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Figure 1: Part of the scientific type hierarchy.

To the scientific types, MLJ adds a specific convention specifying a scientific type for every
Julia object. The convention is expressed through a single method scitype. So, for example,
scitype(x) returns Continuous whenever the type of x is a subtype of Julia’s AbstractF
loat type, as in scitype(3.14) == Continuous. A tabular data structure satisfying the
Tables.jl interface, will always have type Table{K}, where the type parameter K is the union
of all column scientific types. A coerce method recasts machine types to have the desired
scientific type (interpretation), and a schema method summarizes the machine and scientific
types of tabular data.
Since scientific types are also Julia types, Julia’s advanced type system means scientific types
can be organized in a type hierarchy. It is straightforward to check the compatibility of data
with a model’s scientific requirements and methods can be dispatched on scientific type just
as they would on ordinary types.

Flexible and compact work-flows for performance evaluation
and tuning

To evaluate the performance of some model object (specifying the hyper-parameters of some
supervised learning algorithm) using some specified resampling strategy, and measured
against some battery of performance measures, one runs:

evaluate(model, X, y,
resampling=CV(nfolds=6),
measures=[L2HingeLoss(), BrierScore()])

which has (truncated) output

measure measurement per_fold

L2HingeLoss 1.4 [0.485, 1.58, 2.06, 1.09,
2.18, 1.03]

BrierScore{UnivariateFinite} -0.702 [-0.242, -0.788, -1.03,
-0.545, -1.09, -0.514]

As in mlr, hyper-parameter optimization is realized as a model wrapper, which transforms a
base model into a “self-tuning” version of that model. That is, tuning is is abstractly specified
before being executed. This allows tuning to be integrated into work-flows (learning networks)
in multiple ways. A well-documented tuning interface (A. Blaom & collaborators, 2020) allows
developers to easily extend available hyper-parameter tuning strategies.
We now give an example of syntax for wrapping a model called forest_model in a random
search tuning strategy, using cross-validation, and optimizing the mean square loss. The model
in this case is a composite model with an ordinary hyper-parameter called bagging_fraction
and a nested hyper-parameter atom.n_subfeatures (where atom is another model). The
first two lines of code define ranges for these parameters.
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r1 = range(forest_model, :(atom.n_subfeatures), lower=1, upper=9)
r2 = range(forest_model, :bagging_fraction, lower=0.4, upper=1.0)
self_tuning_forest_model = TunedModel(model=forest_model,

tuning=RandomSearch(),
resampling=CV(nfolds=6),
range=[r1, r2],
measure=LPDistLoss(2),
n=25)

In this random search example, default priors are assigned to each hyper-parameter, but
options exist to customize these. Both resampling and tuning have options for parallelization;
Julia has first class support for both distributed and multi-threaded parallelism.

A unified approach to probabilistic predictions and their
evaluation

MLJ puts probabilistic models and deterministic models on equal footing. Unlike most most
frameworks, a supervised model is either probabilistic - meaning it’s predict method returns a
distribution object - or it is deterministic - meaning it returns objects of the same scientific type
as the training observations. To use a probabilistic model to make deterministic predictions one
can wrap the model in a pipeline with an appropriate post-processing function, or use additional
predict_mean, predict_median, predict_mode methods to deal with the common use-
cases.
A “distribution” object returned by a probabilistic predictor is one that can be sampled (using
Julia’s rand method) and queried for properties. Where possible the object is in fact a
Distribution object from the Distributions.jl package (Lin et al., 2020), for which an
additional pdf method for evaluating the distribution’s probability density or mass function
will be implemented, in addition to mode, mean and median methods (allowing MLJ’s fallbacks
for predict_mean, etc, to work).
One important distribution not provided by Distributions.jl is a distribution for finite sample
spaces with labeled elements (called UnivariateFinite) which additionally tracks all possible
classes of the categorical variable it is modeling, and not just those observed in training data.
By predicting distributions, instead of raw probabilities or parameters, MLJ avoids a common
pain point, namely deciding and agreeing upon a convention about how these should be rep-
resented: Should a binary classifier predict one probability or two? Are we using the standard
deviation or the variance here? What’s the protocol for deciding the order of (unordered)
classes? How should multi-target predictions be combined?, etc.
A case-in-point concerns performance measures (metrics) for probabilistic models, such as
cross-entropy and Brier loss. All built-in probabilistic measures provided by MLJ are passed a
distribution in their prediction slot.
For an overview on probabilistic supervised learning we refer to (Gressmann et al., 2018).

Model interfaces

In MLJ a model is just a struct storing the hyper-parameters associated with some learning
algorithm suggested by the struct name (e.g., DecisionTreeClassifier) and that is all.
MLJ provides a basic model interface, to be implemented by new machine learning models,
which is functional in style, for simplicity and maximal flexibility. In addition to a fit and
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optional update method, one implements one or more operations, such as predict, transf
orm and inverse_transform, acting on the learned parameters returned by fit.
The optional update method allows one to avoid unnecessary repetition of code execution
(warm restart). The three main use-cases are:

• Iterative models. If the only change to a random forest model is an increase in the
number of trees by ten, for example, then not all trees need to be retrained; only ten
new trees need to be trained.

• Data preprocessing. Avoid overheads associated with data preprocessing, such as
coercion of data into an algorithm-specific type.

• Smart training of composite models. When tuning a simple transformer-predictor
pipeline model using a holdout set, for example, it is unnecessary to retrain the trans-
former if only the predictor hyper-parameters change. MLJ implements “smart” retrain-
ing of composite models like this by defining appropriate update methods.

In the future MLJ will add an update_data method to support models that can carry out
on-line learning.
Presently, the general MLJ user is encouraged to interact through a machine interface which
sits on top of the model interface. This makes some work-flows more convenient but, more
significantly, introduces a syntax which is more natural in the context of model composition
(see below). A machine is a mutable struct that binds a model to data at construction, as
in mach = machine(model, data), and which stores learned parameters after the user calls
fit!(mach, rows=...). To retrain with new hyper-parameters, the user can mutate model
and repeat the fit! call.
The operations predict, transform, etc are overloaded for machines, which is how the user
typically uses them, as in the call predict(mach, Xnew).

Flexible model composition

Several limitations surrounding model composition are increasingly evident to users of the
dominant machine learning software platforms. The basic model composition interfaces pro-
vided by the toolboxes mentioned in the Introduction all share one or more of the following
shortcomings, which do not exist in MLJ:

• Composite models do not inherit all the behavior of ordinary models.

• Composition is limited to linear (non-branching) pipelines.

• Supervised components in a linear pipeline can only occur at the end of the pipeline.

• Only static (unlearned) target transformations/inverse transformations are supported.

• Hyper-parameters in homogeneous model ensembles cannot be coupled.

• Model stacking, with out-of-sample predictions for base learners, cannot be imple-
mented.

• Hyper-parameters and/or learned parameters of component models are not easily in-
spected or manipulated (in tuning algorithms, for example)

• Composite models cannot implement multiple operations, for example, both a predict
and transform method (as in clustering models) or both a transform and inverse_
transform method.
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We now sketch MLJ’s composition API, referring the reader to (A. Blaom, 2020a) for technical
details, and to the MLJ documentation (A. Blaom, 2020b; Lienart et al., 2020) for examples
that will clarify how the composition syntax works in practice.
Note that MLJ also provides “canned” model composition for common use cases, such as
non-branching pipelines and homogeneous ensembles, which are not discussed further here.
Specifying a new composite model type is in two steps, prototyping and export.

Prototyping

In prototyping the user defines a so-called learning network, by effectively writing down the
same code she would use if composing the models “by hand”. She does this using the machine
syntax, with which she will already be familiar, from the basic fit!/predict work-flow for
single models. There is no need for the user to provide production training data in this process.
A dummy data set suffices, for the purposes of testing the learning network as it is built.

Figure 2: Specifying prediction and training flows in a simple learning network. The network shown
combines a ridge regressor with a learned target transformation (Box Cox).

The upper panel of Figure Figure 2 illustrates a simple learning network in which a continuous
target y is “normalized” using a learned Box Cox transformation, producing z, while PCA
dimension reduction is applied to some features X, to obtain Xr. A Ridge regressor, trained
using data from Xr and z, is then applied to Xr to make a target prediction ẑ. To obtain a
final prediction ŷ, we apply the inverse of the Box Cox transform, learned previously, to ẑ.
The lower “training” panel of the figure shows the three machines which will store the param-
eters learned in training - the Box Cox exponent and shift (machine1), the PCA projection

Blaom et al., (2020). MLJ: A Julia package for composable machine learning. Journal of Open Source Software, 5(55), 2704. https:
//doi.org/10.21105/joss.02704

6

https://doi.org/10.21105/joss.02704
https://doi.org/10.21105/joss.02704


(machine2) and the ridge model coefficients and intercept (machine3). The diagram addi-
tionally indicates where machines should look for training data, and where to access model
hyper-parameters (stored in box_cox, PCA and ridge_regressor).
The only syntactic difference between composing “by hand” and building a learning network
is that the training data must be wrapped in “source nodes” (which can be empty if testing is
not required) and the fit! calls can be omitted, as training is now lazy. Each data “variable”
in the manual work-flow is now a node of a directed acyclic graph encoding the composite
model architecture. Nodes are callable, with a node call triggering lazy evaluation of the
predict, transform and other operations in the network. Instead of calling fit! on every
machine, a single call to fit! on a node triggers training of all machines needed to call that
node, in appropriate order. As mentioned earlier, training such a node is “smart” in the sense
that hyper-parameter changes to a model only trigger retraining of necessary machines. So,
for example, there is no need to retrain the Box Cox transformer in the preceding example if
only the ridge regressor hyper-parameters have changed.
The syntax, then, for specifying the learning network shown Figure 2 looks like this:

X = source(X_dummy) # or just source()
y = source(y_dummy) # or just source()

machine1 = machine(box_cox, y)
z = transform(machine1, y)

machine2 = machine(PCA, X)
Xr = transform(machine2, X)

machine3 = machine(ridge_regressor, Xr, z)
ẑ = predict(machine3, Xr)

ŷ = inverse_transform(machine1, ẑ)

fit!(ŷ) # to test training on the dummy data
ŷ() # to test prediction on the dummy data

Note that the machine syntax is a mechanism allowing for multiple nodes to point to the same
learned parameters of a model, as in the learned target transformation/inverse transformation
above. They also allow multiple nodes to share the same model (hyper-parameters) as in
homogeneous ensembles. And different nodes can be accessed during training and “prediction”
modes of operation, as in stacking.

Export

In the second step of model composition, the learning network is “exported” as a new stand-
alone composite model type, with the component models appearing in the learning network
becoming default values for corresponding hyper-parameters of the composite. This new type
(which is unattached to any particular data) can be instantiated and used just like any other
MLJ model (tuned, evaluated, etc). Under the hood, training such a model builds a learning
network, so that training is “smart”. Defining a new composite model type requires generating
and evaluating code, but this is readily implemented using Julia’s meta-programming tools,
i.e., executed by the user with a simple macro call.
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Future directions

There are plans to: (i) grow the number of models; (ii) enhance core functionality, particu-
larly around hyper-parameter optimization (A. Blaom & collaborators, 2020); and (iii) broaden
scope, particularly around probabilistic programming models, time series, sparse data and nat-
ural language processing. A more comprehensive road map is linked from the MLJ repository
(Blaom, 2019).
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