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Summary

SeismicMesh is a Python package for simplex mesh generation in two or three dimensions. As
an implementation of DistMesh (Persson & Strang, 2004), it produces high-quality meshes
at the expense of speed. For increased efficiency, the core package is written in C++, works
in parallel, and uses the Computational Geometry Algorithms Library (Hert & Seel, 2020).
SeismicMesh can also produce mesh-density functions from seismological data to be used in
the mesh generator.

Background

Generating a high-quality graded mesh for a geophysical domain represents a challenge for
seismological modeling using the finite element method (FEM). In these applications, a domain
is discretized typically with triangular/tetrahedral elements that vary widely in size around
features of interest. These meshes are commonly used with the FEM to solve partial differential
equations that model acoustic or elastic waves, which are used in seismic velocity model
building algorithms such as full waveform inversion (FWI) (Tarantola, 1984; Virieux & Operto,
2009) and reverse time migration (Modave et al., 2015).

Statement of Need

Despite the fact that many mesh generation programs exist such as Gmsh (Geuzaine &
Remacle, 2009) and CGAL (Alliez et al., 2020; Rineau, 2020), it is uncommon to find capa-
bilities that incorporate geophysical data into the mesh generation process to appropriately
size elements. This in part contributes to the reality that automatic mesh generation for
geophysical domains is not user-friendly.
Some packages have been created to script mesh generation from geophysical datasets such
as in coastal ocean modeling (Gorman et al., 2008; K. J. Roberts et al., 2019) and reservoir
modeling (Cacace & Blöcher, 2015). In a similar manner, the aim of this package is to
provide a straightforward Python package to script mesh generation directly from seismic
velocity models. This is accomplished first by building a mesh density function using seismic
velocity data and then supplying these inputs to a mesh generator that can use these inputs
and operate at scale.
The mesh density function can be used as input other mesh generators. However, the usage
of a sizing function can have significant impact on the mesh generation performance. For
example, Gmsh’s advancing front and Delaunay refinement methods construct the mesh in-
crementally and do not permit vectorization, which leads to reduced performance at scale in
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2D/3D. In contrast, the DistMesh algorithm takes advantage of vectorization when querying
a complex mesh density function making it efficient and competitive to Gmsh for this kind of
meshing problem.

Core functionality

1. The creation of 2D/3D graded mesh size functions defined on axis-aligned regular Carte-
sian grids. These mesh sizing functions encode mesh resolution distributions that con-
form to the variations from inputted seismic velocity model data and are distributed
according to several heuristics (see K. Roberts, 2020 for further details). Mesh size
function grading is accomplished using Persson (2006).

2. Distributed memory parallelism. The generation of potentially large (> 10 million cells)
high-quality triangular or tetrahedral meshes using distributed memory parallelism with
mesh resolution following sizing functions.

3. An implementation of a 3D so-called sliver tetrahedral element removal technique
(Tournois et al., 2009) to bound a mesh quality metric. Note that 2D mesh gener-
ation does not suffer from the formation of sliver elements.

Similar to other meshing programs such as Gmsh, SeismicMesh (K. Roberts, 2020) enables
generation of simplex meshes through a Python application programming interface.
The mesh’s domain geometry is defined as the 0-level set of a signed distance function (SDF),
which avoids the need to have explicit geometry information defining the boundary and can
be particularly useful in geophysical domains.

Performance Comparison

We compare the 2D/3D serial performance in terms of cell quality and mesh creation time
between SeismicMesh, Gmsh (Geuzaine & Remacle, 2009) and CGAL (Alliez et al., 2020;
Rineau, 2020). The cell quality is defined as the product of the topological dimension of the
mesh (2 or 3) and the incircle radius divided by the circumcircle radius and ranges between
0 and 1, where 1 is a perfectly symmetrical simplex. In mesh generation, there is always
a trade-off between generation speed and mesh quality. We find that Gmsh produces high-
quality meshes by far the fastest, SeismicMesh will produce meshes with the best quality, but
much slower. Gmsh becomes comparatively slow when a user-defined mesh-density function
is involved, which is SeismicMesh’s primary use case.
For the two seismic domains (e.g., BP2004 and EAGE), SeismicMesh is faster than Gmsh
for the 2D BP2004 benchmark but slightly slower for the 3D EAGE benchmark at scale.
CGAL is not competitive for the 3D benchmark and is therefore not shown. Interpolant-based
mesh sizing functions significantly slow the mesh generation time of Gmsh by a factor of
∼ 3 as Gmsh calls the sizing function for each point individually (e.g., 95,756 times) whereas
SeismicMesh does it for all points at once each meshing iteration (e.g., 26 times).
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Figure 1: Using SeismicMesh V3.2.0, the mesh creation time (left columns) and resulting cell quality
(right columns) for the four benchmarks studied over a range of problem sizes. For the panels that
show cell quality, solid lines indicate the mean and dashed lines indicate the minimum cell quality in
the mesh.
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Parallelism

A simplified version of the parallel Delaunay algorithm proposed by Peterka et al. (2014) is
implemented inside the DistMesh algorithm, which does not consider sophisticated domain
decomposition or load balancing yet. Figure 2 shows a peak speed-up of approximately 6
times using 11 cores when performing 50 meshing iterations to generate the 33M cell mesh of
the EAGE P-wave velocity model. While the parallel performance is not perfect at this stage
of development, the capability reduces the generation time of this relatively large example
(e.g., 33 M cells) from 91.0 minutes to approximately 15.6 minutes. Results indicate that the
simple domain decomposition approach inhibit perfect scalability. The machine used for this
experiment was an Intel Xeon Gold 6148 machine clocked at 2.4 GHz with 192 GB of RAM
connected together with a 100 Gb/s InfiniBand network.

Intel Xeon Gold 6148 @ 2.86 Ghz

91.0
11.8

Figure 2: The speedup (left-panel) as compared to the serial version of SeismicMesh V3.2.0 for a
relatively light and heavy mesh each adapted to P-wave data from the EAGE Salt seismic velocity
model. The total mesh generation wall-clock time is annotated in decimal minutes next to each point.
The panel on the right hand side shows the mesh generation rate normalized by the number of total
number of cells in the mesh.

Ongoing and future applications

Some future applications for this software:

• SeismicMesh is being used by a group of researchers to build 2D/3D meshes for a seis-
mological FEM model that has been developed in the Firedrake computing environment
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(Rathgeber et al., 2017).

• The usage of SDF to implicitly define the meshing domain presents potential use cases
in a topology-optimization framework (Laurain, 2018) for modeling the sharp interface
of salt-bodies in seismological domains. In these applications, the 0-level set of a SDF is
used to demarcate the boundary of the feature. Each inversion iteration, an optimization
problem is solved to produce modifications to the location of the 0-level set. In this
framework, SeismicMesh can be used within the inversion algorithm to generate and
adapt meshes.

• Much like how the original DistMesh program has been used, SeismicMesh can be
adapted for other domain-specific applications besides seismology (e.g., fluid dynamics,
astrophysics, and oceanography). An open source project project is already under way
to use the same mesh generation technology for a Python version of OceanMesh2D to
build industrial-grade meshes of coastal oceans (K. J. Roberts et al., 2019).

We expect future extensions of the program to introduce better domain decomposition algo-
rithms to improve parallel performance.
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