
DE-Sim: an object-oriented, discrete-event simulation
tool for data-intensive modeling of complex systems in
Python
Arthur P. Goldberg1 and Jonathan R. Karr1

1 Icahn Institute for Data Science and Genomic Technology and Department of Genetics and
Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

DOI: 10.21105/joss.02685

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @gonsie
• @carothersc
• @yadudoc

Submitted: 09 September 2020
Published: 16 November 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Recent advances in data collection, storage, and sharing have created unprecedented oppor-
tunities to gain insights into complex systems such as the biochemical networks that generate
cellular behavior. Understanding the behavior of such systems will likely require larger and
more comprehensive dynamical models that are based on a combination of first principles
and empirical data. These models will likely represent each component and interaction using
mechanistic approximations that are derived from first principles and calibrated with data. For
example, dynamical models of biochemical networks often represent the interactions among
molecules as chemical reactions whose rates are determined by combining approximations of
chemical kinetics and empirically-observed reaction rates. Furthermore, complex models that
represent multiple types of components and their interactions will require diverse approxima-
tions and large, heterogeneous datasets. New tools are needed to build and simulate such
data-intensive models.
One of the most promising methods for building and simulating data-intensive models is
discrete-event simulation (DES). DES represents the dynamics of a system as a sequence of
instantaneous events (Fishman, 2013). DES is used for a wide range of research, such as
studying the dynamics of biochemical networks, characterizing the performance of computer
networks, evaluating potential war strategies, and forecasting epidemics (Banks et al., 2009).
Although multiple DES tools exist, it remains difficult to build and simulate data-intensive
models. First, it is cumbersome to create complex models with the low-level languages sup-
ported by many of the existing tools. Second, most of the existing tools are siloed from the
ecosystems of data science tools that are exploding around Python and R.
To address this problem, we developed DE-Sim (https://github.com/KarrLab/de_sim), an
open-source, object-oriented (OO), Python-based DES tool. DE-Sim helps researchers model
complex systems by enabling them to use Python’s powerful OO features to manage multiple
types of components and multiple types of interactions. By building upon Python, DE-Sim
also makes it easy for researchers to employ Python’s powerful data science tools, such as
pandas (McKinney, 2010) and SciPy (Virtanen et al., 2020), to use large, heterogeneous
datasets to build comprehensive and detailed models. We anticipate that DE-Sim will enable
a new generation of models that capture systems with unprecedented breadth and depth. For
example, we are using DE-Sim to develop WC-Sim (Arthur P. Goldberg & Karr, 2020), a multi-
algorithmic simulation tool for whole-cell models (Arthur P. Goldberg et al., 2016; Arthur P.
Goldberg et al., 2018; Karr et al., 2012, 2015) that predict phenotype from genotype by
capturing all of the biochemical activity in a cell.
Here, we describe the need for new tools for building and simulating more comprehensive and
more detailed models, and outline how DE-Sim addresses this need. In addition, we summarize

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

1

https://doi.org/10.21105/joss.02685
https://github.com/openjournals/joss-reviews/issues/2685
https://github.com/KarrLab/de_sim
https://doi.org/10.5281/zenodo.4274852
http://danielskatz.org/
https://github.com/gonsie
https://github.com/carothersc
https://github.com/yadudoc
http://creativecommons.org/licenses/by/4.0/
https://github.com/KarrLab/de_sim
https://doi.org/10.21105/joss.02685


the strengths of DE-Sim over existing DES tools, and we report the simulation performance of
DE-Sim. Finally, we outline our plans to increase the performance of simulations executed by
DE-Sim. A tutorial that describes how to build and simulate models with DE-Sim, examples,
and documentation are available online, as described in the ‘Availability of DE-Sim’ section
below.

Statement of Need

Many scientific fields can now collect detailed data about the components of complex systems
and their interactions. For example, deep sequencing has dramatically increased the availability
of molecular data about biochemical networks. Combined with advances in computing, we
believe that it is now possible to use this data and first principles to create comprehensive
and detailed models that can provide new insights into complex systems. For example, deep
sequencing and other molecular data can be used to build whole-cell models.
Achieving such comprehensive and detailed models will likely require integrating disparate
principles and diverse data. While there are several DES tools, such as SimEvents (Clune et al.,
2006) and SimPy (Matloff, 2008), and numerous tools for working with large, heterogeneous
datasets, such as pandas and SQLAlchemy (Bayer, 2020), it is difficult to use these tools in
combination. As a result, despite having most of the major ingredients, it remains difficult to
build and simulate data-intensive models.

DE-Sim provides critical features for building and simulating
data-intensive models

DE-Sim simplifies the construction and simulation of discrete-event models through several
features. First, DE-Sim structures discrete-event models as OO programs (Zeigler, 1987).
This structure enables researchers to use simulation object classes to encapsulate the complex
logic required to represent model components, and use event message classes to encapsulate
the logic required to describe the interactions among model components. With DE-Sim, users
define simulation object classes by creating subclasses of DE-Sim’s simulation object class.
DE-Sim simulation object classes can exploit all the features of Python classes. For example,
users can encode relationships between the types of components in a model into hierarchies of
subclasses of simulation objects. As a concrete example, a model of the biochemistry of RNA
transcription and protein translation could be implemented using a superclass that captures
the behavior of polymers and three subclasses that represent the specific properties of DNAs,
RNAs, and proteins. By representing model components as Python simulation objects, DE-Sim
makes it easy to model complex systems that contain multiple types of components by defining
multiple classes of simulation objects. Users can then model arbitrarily many instances of each
type of component by creating multiple instances of the corresponding simulation object class.
Second, by building on top of Python, DE-Sim enables researchers to conveniently use Python’s
extensive suite of data science tools to build models from heterogeneous, multidimensional
datasets. For example, researchers can use tools such as ObjTables (Karr et al., 2020),
H5py, requests, SQLAlchemy, and pandas to access diverse data in spreadsheets, HDF5 files,
REST APIs, databases, and other sources; use tools such as NumPy (Oliphant, 2015) to
integrate this data into a unified model; and use tools such as SciPy and NumPy to perform
calculations during simulations of models. DE-Sim also facilitates the use of Python tools to
analyze simulation results.
In addition, DE-Sim provides several features to help users execute, analyze, and debug sim-
ulations:

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

2

https://doi.org/10.21105/joss.02685


• Stop conditions: DE-Sim makes it easy to terminate simulations when specific criteria
are reached. Researchers can specify stop conditions as functions that return true when
a simulation should conclude.

• Results checkpointing: The results of a simulation can be conveniently recorded by
configuring periodic checkpoints of specified parts of the simulation’s state.

• Reproducible simulations: To help researchers debug simulations, repeated executions
of the same simulation with the same configuration and same random number generator
seed produce the same results.

• Space-time visualizations: DE-Sim generates space-time visualizations of simulation
trajectories (Figure 1). These diagrams can help researchers understand and debug
simulations.

Figure 1: DE-Sim can generate space-time visualizations of simulation trajectories. This figure
illustrates a space-time visualization of all of the events and messages in a simulation of the parallel
hold (PHOLD) DES benchmark model (Fujimoto, 1990) with three simulation objects. The timeline
(black line) for each object shows its events (grey dots). The blue and purple arrows illustrate events
scheduled by simulation objects for themselves and other objects, respectively. The code for this
simulation is available in the DE-Sim Git repository.

We believe that these features can simplify and accelerate the development of complex, data-
intensive models.

Comparison of DE-Sim with existing discrete-event simula-
tion tools

Although multiple DES tools already exist, we believe that DE-Sim uniquely facilitates data-
intensive modeling through a novel combination of OO modeling and support for numerous

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

3

https://doi.org/10.21105/joss.02685


high-level data science tools. Figure 2 compares the features and characteristics of DE-Sim
with some of the most popular DES tools.

Figure 2: Comparison of DE-Sim with some of the most popular DES tools. DE-Sim is the only
open-source, OO DES tool based on Python. This combination of features makes DE-Sim uniquely
suitable for creating and simulating complex, data-intensive models.

SimPy is an open-source DES tool that enables users to write functions that describe simu-
lation processes (SimPy’s analog to DE-Sim’s simulation objects). As another Python-based
tool, SymPy also makes it easy for researchers to leverage the Python ecosystem to build
models. However, we believe that DE-Sim makes it easier for researchers to build complex
models by enabling them to implement models as collections of classes rather than collections
of functions. DE-Sim thereby enables modelers to use a Python object to encapsulate the
state of a model component together with operations on the state, and use inheritance to
share state and operations among related types of model components. In addition, we believe
that DE-Sim is simpler to use because DE-Sim supports a uniform approach for schedul-
ing events, whereas SimPy simulation processes must use two different approaches: one to
schedule events for themselves, and another to schedule events for other processes.
SimEvents is a library for DES within the MATLAB/Simulink environment. While SimEvents’
graphical interface makes it easy to create simple models, we believe that DE-Sim makes it
easier to implement more complex models. By facilitating use of the many Python-based data
science tools, DE-Sim makes it easier to use data to create models than SimEvents, which
builds on a smaller ecosystem of data science tools.
SystemC is a C++-based OO DES tool that is frequently used to model digital systems (Mueller
et al., 2001). While SystemC provides many of the same core features as DE-Sim, we believe
that DE-Sim is more accessible to researchers than SystemC because DE-Sim builds upon
Python, which is more popular than C++ in many fields of research.
SIMSCRIPT III (Rice et al., 2005) and SIMUL8 (Concannon et al., 2003) are commercial DES
tools that define proprietary languages which researchers can use to implement models. SIM-
SCRIPT III is a general-purpose simulation language designed for modeling decision support
systems in domains such as war-gaming, transportation, and manufacturing. We believe that
DE-Sim is more powerful than SIMSCRIPT III for most scientific and engineering problems
because it leverages Python’s robust data science ecosystem.
SIMUL8 models business processes as workflows. It provides a powerful GUI for describing
the flow of work items through a network of queues and servers, and includes tools to analyze

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

4

https://doi.org/10.21105/joss.02685


and visualize the potentially stochastic behavior of a process. DE-Sim is more suitable than
SIMUL8 for modeling scientific or engineering systems because modelers can use DE-Sim to
describe processes that cannot be easily structured as workflows.

Performance of DE-Sim

Figure 3 illustrates the performance of DE-Sim simulating a model of a cyclic messaging
network over a range of network sizes. A messaging network consists of a ring of nodes.
When a node handles an event, it schedules the same type of event for its forward neighbor
with a one time-unit delay. Each simulation is initialized by sending a message to each node
at the first time-unit. The code for this performance test is available in the DE-Sim Git
repository, and in a Jupyter notebook at https://sandbox.karrlab.org/tree/de_sim.

Figure 3: Performance of DE-Sim simulating a cyclic messaging network over a range of sizes.
Each simulation was executed for 100 time-units. Each statistic represents the average of three
simulation runs in a Docker container running on a 2.9 GHz Intel Core i5 processor.

Conclusion

In summary, DE-Sim is an open-source, object-oriented, discrete-event simulation tool imple-
mented in Python that makes it easier for modelers to create and simulate complex, data-
intensive models. First, DE-Sim enables researchers to conveniently use Python’s OO features
to manage multiple types of model components and interactions among them. Second, DE-
Sim enables researchers to directly use Python data science tools, such as pandas and SciPy,
and large, heterogeneous datasets to construct models. Together, we anticipate that DE-Sim
will accelerate the construction and simulation of unprecedented models of complex systems,
leading to new scientific discoveries and engineering innovations.
To further advance the simulation of data-intensive models, we aim to improve the simulation
performance of DE-Sim. One potential direction is to use DE-Sim as a specification language
for a parallel DES system such as ROSS (Carothers et al., 2000). This combination of DE-
Sim and ROSS would enable modelers to both create models with DE-Sim’s high-level model
specification semantics and quickly simulate models with ROSS.

Availability of DE-Sim

DE-Sim is freely and openly available under the MIT license at the locations below.

• Source code repository: GitHub: KarrLab/de_sim

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

5

https://sandbox.karrlab.org/tree/de_sim/4.%20DE-Sim%20performance%20test.ipynb
https://github.com/KarrLab/de_sim/
https://doi.org/10.21105/joss.02685


• Jupyter notebook tutorials: https://sandbox.karrlab.org/tree/de_sim
• Documentation: docs.karrlab.org

DE-Sim requires Python 3.7 or higher and pip. This article discusses version 1.0.5 of DE-Sim.

Acknowledgements

We thank Yin Hoon Chew for her helpful feedback. This work was supported by the National
Science Foundation [1649014 to JRK], the National Institutes of Health [R35GM119771 to
JRK], and the Icahn Institute for Data Science and Genomic Technology.

References

Banks, J., Carson II, J., Nelson, B., & Nicol, D. (2009). Discrete-event system simulation.
Pearson. ISBN: 978-0136062127

Bayer, M. (2020). SQLAchemy-the database toolkit for Python. https://www.sqlalchemy.
org/

Carothers, C. D., Bauer, D., & Pearce, S. (2000). ROSS: A high-performance, low memory,
modular Time Warp system. Proceedings of the Fourteenth Workshop on Parallel and
Distributed Simulation, 62, 53–60. https://doi.org/10.1109/PADS.2000.847144

Clune, M. I., Mosterman, P. J., & Cassandras, C. G. (2006). Discrete Event and Hybrid
System Simulation with SimEvents. Proceedings of the 8th International Workshop on
Discrete Event Systems, 386–387. https://doi.org/10.1109/wodes.2006.382398

Concannon, K. H., Hunter, K. I., & Tremble, J. M. (2003). Dynamic scheduling II: SIMUL8-
planner simulation-based planning and scheduling. 1488–1493. https://doi.org/10.1109/
WSC.2003.1261534

Fishman, G. S. (2013). Discrete-event simulation: Modeling, programming, and analysis.
Springer Science & Business Media. ISBN: 978-0-387-95160-7

Fujimoto, R. M. (1990). Performance of Time Warp under synthetic workloads. Proceedings
of the SCS Multiconference on Distributed Simulations, 22, 23–28. https://gdo149.llnl.
gov/attachments/20776356/24674621.pdf

Goldberg, Arthur P., Chew, Y. H., & Karr, J. R. (2016). Toward scalable whole-cell modeling
of human cells. Proceedings of the ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 259–262. https://doi.org/10.1145/2901378.2901402

Goldberg, Arthur P., & Karr, J. R. (2020). WC-Sim: A multi-algorithmic simulator for whole-
cell models. https://github.com/KarrLab/wc_sim

Goldberg, Arthur P., Szigeti, B., Chew, Y. H., Sekar, J. A., Roth, Y. D., & Karr, J. R. (2018).
Emerging whole-cell modeling principles and methods. Current Opinion in Biotechnology,
51, 97–102. https://doi.org/10.1016/j.copbio.2017.12.013

Karr, J. R., Liebermeister, W., Goldberg, A. P., Sekar, J. A. P., & Shaikh, B. (2020). Ob-
jTables: Structured supplementary spreadsheets that promote data quality, reuse, and
integration. arXiv. https://arxiv.org/abs/2005.05227

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival Jr, B.,
Assad-Garcia, N., Glass, J. I., & Covert, M. W. (2012). A whole-cell computational model
predicts phenotype from genotype. Cell, 150(2), 389–401. https://doi.org/10.1016/j.cell.
2012.05.044

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

6

https://sandbox.karrlab.org/tree/de_sim
https://docs.karrlab.org/de_sim/
https://www.python.org/
https://pip.pypa.io/
https://worldcat.org/isbn/978-0136062127
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://doi.org/10.1109/PADS.2000.847144
https://doi.org/10.1109/wodes.2006.382398
https://doi.org/10.1109/WSC.2003.1261534
https://doi.org/10.1109/WSC.2003.1261534
https://worldcat.org/isbn/978-0-387-95160-7
https://gdo149.llnl.gov/attachments/20776356/24674621.pdf
https://gdo149.llnl.gov/attachments/20776356/24674621.pdf
https://doi.org/10.1145/2901378.2901402
https://github.com/KarrLab/wc_sim
https://doi.org/10.1016/j.copbio.2017.12.013
https://arxiv.org/abs/2005.05227
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.21105/joss.02685


Karr, J. R., Takahashi, K., & Funahashi, A. (2015). The principles of whole-cell modeling.
Current Opinion in Microbiology, 27, 18–24. https://doi.org/10.1016/j.mib.2015.06.004

Matloff, N. (2008). Introduction to discrete-event simulation and the SimPy language. https:
//web.cs.ucdavis.edu/~matloff/matloff/public_html/156/PLN/DESimIntro.pdf

McKinney, W. (2010). Data structures for statistical computing in Python. Proceedings
of the 9th Python in Science Conference, 445, 51–56. https://doi.org/10.25080/
majora-92bf1922-00a

Mueller, W., Ruf, J., Hoffmann, D., Gerlach, J., Kropf, T., & Rosenstiehl, W. (2001). The
simulation semantics of SystemC. Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, 64–70. https://doi.org/10.1109/DATE.2001.915002

Oliphant, T. E. (2015). A guide to NumPy. CreateSpace Independent Publishing Platform.
ISBN: 978-1517300074

Rice, S. V., Marjanski, A., Markowitz, H. M., & Bailey, S. M. (2005). The SIMSCRIPT III
programming language for modular object-oriented simulation. Proceedings of the Winter
Simulation Conference, 2005., 10–pp. https://doi.org/10.1109/wsc.2005.1574302

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–
272. https://doi.org/10.1038/s41592-019-0686-2

Zeigler, B. P. (1987). Hierarchical, modular discrete-event modelling in an object-oriented en-
vironment. Simulation, 49(5), 219–230. https://doi.org/10.1177/003754978704900506

Goldberg et al., (2020). DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python.
Journal of Open Source Software, 5(55), 2685. https://doi.org/10.21105/joss.02685

7

https://doi.org/10.1016/j.mib.2015.06.004
https://web.cs.ucdavis.edu/~matloff/matloff/public_html/156/PLN/DESimIntro.pdf
https://web.cs.ucdavis.edu/~matloff/matloff/public_html/156/PLN/DESimIntro.pdf
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1109/DATE.2001.915002
https://worldcat.org/isbn/978-1517300074
https://doi.org/10.1109/wsc.2005.1574302
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1177/003754978704900506
https://doi.org/10.21105/joss.02685

	Summary
	Statement of Need
	DE-Sim provides critical features for building and simulating data-intensive models
	Comparison of DE-Sim with existing discrete-event simulation tools
	Performance of DE-Sim
	Conclusion
	Availability of DE-Sim
	Acknowledgements
	References

