
pyOptSparse: A Python framework for large-scale
constrained nonlinear optimization of sparse systems
Ella Wu 1, Gaetan Kenway1, Charles A. Mader1, John Jasa1, and Joaquim
R. R. A. Martins1

1 Department of Aerospace Engineering, University of Michigan
DOI: 10.21105/joss.02564

Software
• Review
• Repository
• Archive

Editor: Jack Poulson
Reviewers:

• @jgoldfar
• @vissarion
• @matbesancon

Submitted: 15 July 2020
Published: 24 October 2020

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pyOptSparse is an optimization framework designed for constrained nonlinear optimization of
large sparse problems and provides a unified interface for various gradient-free and gradient-
based optimizers. By using an object-oriented approach, the software maintains independence
between the optimization problem formulation and the implementation of the specific optimizers.
The code is MPI-wrapped to enable execution of expensive parallel analyses and gradient
evaluations, such as when using computational fluid dynamics (CFD) simulations, which can
require hundreds of processors. The optimization history can be stored in a database file, which
can then be used both for post-processing and restarting another optimization. A graphical
user interface application is provided to visualize the optimization history interactively.

pyOptSparse considers optimization problems of the form

minimize 𝑓(𝑥)
with respect to 𝑥

such that 𝑙 ≤ ⎛⎜
⎝

𝑥
𝐴𝑥
𝑔(𝑥)

⎞⎟
⎠

≤ 𝑢

where 𝑥 is the vector of design variables and 𝑓(𝑥) is a nonlinear objective function. 𝐴 is the
linear constraint Jacobian, and 𝑔(𝑥) is the set of nonlinear constraint functions. At time of
writing, the latest released version of pyOptSparse is v2.2.0.

Features

Support for multiple optimizers
pyOptSparse provides built-in support for several popular proprietary and open-source optimizers.
Each optimizer usually has its own way to specify the problem: It might require different
constraint ordering, have different ways of specifying equality constraints, or use a sparse
matrix format to represent the constraint Jacobian. pyOptSparse provides a common Python
interface for the various optimizers that hides these differences from the user. By isolating
the optimization problem definition from the optimizer, the user can easily switch between
different optimizers applied to the same optimization problem. The optimizer can be switched
by editing a single line of code.

Although pyOptSparse focuses primarily on large-scale gradient-based optimization, it provides
support for gradient-free optimizers as well. Also, discrete variables, multi-objective, and
population-based optimizers are all supported. Because of the object-oriented programming

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

1

https://orcid.org/0000-0001-8856-9661
https://doi.org/10.21105/joss.02564
https://github.com/openjournals/joss-reviews/issues/2564
https://github.com/mdolab/pyoptsparse/
https://doi.org/10.5281/zenodo.4110792
https://hodgestar.com
https://orcid.org/0000-0002-5435-2883
https://github.com/jgoldfar
https://github.com/vissarion
https://github.com/matbesancon
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02564

approach, it is also straightforward to extend pyOptSparse to support any additional optimizers
that are not currently available. All of the features within pyOptSparse, including problem
scaling and optimization hot-start, are automatically inherited when new optimizers are added.

String-based indexing
Unlike many other publicly available optimization frameworks, pyOptSparse is designed to
handle large-scale optimizations, with a focus on engineering applications. With thousands of
design variables and constraints, it is crucial to keep track of all values during optimization
correctly. pyOptSparse employs string-based indexing to accomplish this. Instead of using a
single flattened array, the related design variables and constraints can be grouped into separate
arrays. These arrays are combined using an ordered dictionary, where each group is identified by
a unique key. Similarly, the constraint Jacobian is represented by a nested dictionary approach.
This representation has several advantages:

• The design variable and constraint values can be accessed without knowing their global
indices, which reduces possible user error.

• The global indices are also often optimizer-dependent and this extra level of wrapping
abstracts away potentially-confusing differences between optimizers.

• The constraint Jacobian can be computed and provided at the sub-block level, leaving
pyOptSparse to assemble the whole Jacobian. This mimics the engineering workflow
where different tools often compute different sub-blocks of the Jacobian. The user only
has to ensure that the indices within each sub-block are correct, and the rest is handled
automatically.

Support for sparse linear and nonlinear constraints
One prominent feature of pyOptSparse is the support for sparse constraints. When defining
constraints, it is possible to provide the sparsity pattern of the Jacobian. This can be done at
the global level by specifying which constraint groups are independent of which design variable
groups, thereby letting pyOptSparse know that the corresponding sub-blocks of the Jacobian
are always zero. For nonzero sub-blocks, it is also possible to supply the sparsity pattern of
that sub-block, again using local indexing, such that the actual derivative computation can
use sparse matrices as well.

pyOptSparse also provides explicit support for linear constraints since some optimizers provide
special handling for these constraints. In these cases, only the Jacobian and the bounds of the
constraint need to be supplied. The values and gradients of these constraints do not need to
be evaluated every iteration, since the optimizer satisfies them internally.

Automatic computation of derivatives
If analytic derivatives for the objective and constraint functions are not available, pyOptSparse
can automatically compute them internally using finite differences or the complex-step method
(Martins et al., 2003). For finite differences, the user can use forward or central differences,
with either an absolute or relative step size. Computing derivatives using finite differences
can be expensive, requiring 𝑛 extra evaluations for forward differences and 2𝑛 for centered
differences. Finite differences are also inaccurate due to subtractive cancellation errors under
finite precision arithmetic. The complex-step method, on the other hand, avoids subtractive
cancellation errors. By using small enough steps, the complex-step derivatives can be accurate
to machine precision (Martins et al., 2003). The user must make sure that the objective and
constraint functions can be evaluated correctly with complex design variable values when using
this feature.

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

2

https://doi.org/10.21105/joss.02564

Optimizer-independent problem scaling
pyOptSparse offers optimizer-independent scaling for individual design variables, objective, and
constraints. By separating the optimization problem definition from the particular optimizer,
pyOptSparse can apply the scaling automatically and consistently with any supported optimizer.
Since the optimization problem is always defined in the physical, user-defined space, the bounds
on the design variables and constraints do not need to be modified when applying a different
scaling. Furthermore, for gradient-based optimizers, all the derivatives are scaled automatically
and consistently without any effort from the user. The user only needs to pass in a scale

option when defining design variables, objective, and constraints. This is particularly useful
in engineering applications, where the physical quantities can sometimes cause undesirable
problem scaling, which leads to poor optimization convergence. pyOptSparse allows the user
to adjust problem scaling for each design variable, constraint, and objective separately, without
needing to change the bound specification or derivative computation.

Parallel execution
pyOptSparse can use MPI to execute function evaluations in parallel, in three distinct ways.
Firstly and most commonly, it can perform parallel function evaluations when the functions
themselves require multiple processors. This is usually the case when performing large-scale
optimizations, where the objective and constraint functions are the result of a complex analysis,
such as computational fluid dynamic simulations. In this scenario, pyOptSparse can be executed
with multiple processors, where all processors perform the function evaluation, but only the
root processor runs the optimizer itself. That way, we avoid the scenario where each processor
runs an independent copy of the optimizer, potentially causing inconsistencies or processor
locking.

Secondly, it is possible to perform parallel gradient evaluation when automatic finite-difference
or complex-step derivatives are computed. If the function evaluation only requires a single
processor, it is possible to call pyOptSparse with multiple processors so that each point
in the finite-difference stencil is evaluated in parallel, reducing the wall time for derivative
computations.

Lastly, some population-based optimizers may support parallel function evaluation for each
optimizer iteration. In the case of a genetic algorithm or particle swarm optimization, multiple
function evaluations are required at each optimizer iteration. These evaluations can be done in
parallel if multiple processors are available and the functions only require a single processor to
execute. However, the support and implementation of this mechanism is optimizer-dependent.

Leveraging the history file: visualization and restart
pyOptSparse can store an optimization history file using its own format based on SQLite.
The history file contains the design variables and function values for each optimizer iteration,
along with some metadata such as optimizer options. This file can then be visualized using
OptView, a graphical user interface application provided by pyOptSparse. Alternatively, users
can manually post-process results by using an API designed to query the history file and access
the optimization history to generate plots.

The history file also enables two types of optimization restarts. A cold start merely sets the
initial design variables to the previous optimization’s final design variables. A hot start, on the
other hand, initializes the optimizer with the full state by replaying the previous optimization
history. For a deterministic optimizer, the hot start generates the same sequence of iterates as
long as the functions and gradients remain the same. For each iteration, pyOptSparse retrieves
the previously-evaluated quantities and provides them to the optimizer without actually calling
the objective and constraint functions, allowing us to exactly retrace the previous optimization
and generate the same state within the optimizer in a non-intrusive fashion. This feature is
particularly useful if the objective function is expensive to evaluate and the previous optimization

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

3

https://doi.org/10.21105/joss.02564

was terminated due to problems such as reaching the maximum iteration limit. In this case,
the full state within the optimizer can be regenerated through the hot start process so that
the optimization can continue without performance penalties.

Simple optimization script
To highlight some of the features discussed above, we present the pyOptSparse script to solve
a toy problem involving six design variables split into two groups, 𝑥 and 𝑦. We also add two
nonlinear constraints, one linear constraint, and design variable bounds. The optimization
problem is as follows:

minimize 𝑥0 + 𝑥3
1 + 𝑦20 + 𝑦21 + 𝑦22 + 𝑦23

with respect to 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑦2, 𝑦3
such that − 10 ≤ 𝑥0𝑥1

− 10 ≤ 3𝑥0 − sin(𝑥1) ≤ 10
𝑦0 − 2𝑦1 = 5

− 10 < (𝑥0
𝑥1

) < (10
100)

− 10 <
⎛⎜⎜⎜
⎝

𝑦0
𝑦1
𝑦2
𝑦3

⎞⎟⎟⎟
⎠

The sparsity structure of the constraint Jacobian is shown below:

x (2) y (4)

+---------------+

con (2) | X | |

lin_con(L) (1) | | X |

+---------------+

This allows us to only specify derivatives for the two nonzero sub-blocks. For simplicity,
we supply the linear Jacobian explicitly and use the complex-step method to compute the
derivatives for the nonlinear constraints automatically.

We first define the imports and the objective function.

import numpy as np

from pyoptsparse import Optimization, OPT

def objfunc(xdict):

x = xdict["x"]

y = xdict["y"]

funcs = {}

funcs["obj"] = x[0] + x[1] ** 3 + np.sum(np.power(y, 2))

funcs["con"] = np.zeros(2, np.complex)

funcs["con"][0] = x[0] * x[1]

funcs["con"][1] = 3 * x[0] - np.sin(x[1])

fail = False

return funcs, fail

Only the nonlinear constraints need to be evaluated here. Next, we set up the optimization
problem, including design variables, objective, and constraints.

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

4

https://doi.org/10.21105/joss.02564

Optimization Object

optProb = Optimization("Example Optimization", objfunc)

Design Variables

nx = 2

lower = [-10, -10]

upper = [10, 100]

value = [-5, 6]

optProb.addVarGroup("x", nx, lower=lower, upper=upper, value=value)

ny = 4

optProb.addVarGroup("y", ny, lower=-10, upper=None, value=0)

Nonlinear constraints

ncons = 2

lower = [-10, -10]

upper = [None, 10]

optProb.addConGroup("con", ncons, wrt="x", lower=lower, upper=upper)

Linear constraint

jac = np.zeros((1, ny))

jac[0, 0] = 1

jac[0, 1] = -2

optProb.addConGroup(

"lin_con", 1, lower=5, upper=5, wrt="y", jac={"y": jac}, linear=True

)

Objective

optProb.addObj("obj")

By using the wrt argument when adding constraints, we tell pyOptSparse that only the specified
sub-blocks of the Jacobian are nonzero.

The linear Jacobian for this problem is

⎛⎜⎜⎜
⎝

1
−2
0
0

⎞⎟⎟⎟
⎠

which we construct as jac and pass to pyOptSparse. For large optimization problems, the
Jacobian can be constructed using sparse matrices.

Finally, we set up SLSQP (Kraft, 1988) as the optimizer and solve the optimization problem.

Optimizer

opt = OPT("SLSQP", options={})

Optimize

sol = opt(optProb, sens="CS")

print(sol)

For more extensive examples and API documentation, please refer to the documentation site
for pyOptSparse

Statement of Need
pyOptSparse is a fork of pyOpt (Perez et al., 2012). As the name suggests, its primary
motivation is to support sparse linear and nonlinear constraints in gradient-based optimization.
This sets pyOptSparse apart from other optimization frameworks, such as SciPy (Virtanen et al.,

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

5

https://doi.org/10.21105/joss.02564

2020) and NLopt (Johnson, 2020), which do not provide the same level of support for sparse
constraints. By using string-based indexing, different sub-blocks of the constraint Jacobian
can be computed by separate engineering tools, and assembled automatically by pyOptSparse
in a sparse fashion. In addition, other frameworks do not offer convenience features, such as
user-supplied optimization problem scaling, optimization hot-start, or post-processing utilities.
Although pyOptSparse is a general optimization framework, it is tailored to gradient-based
optimizations of large-scale problems with sparse constraints.

pyOptSparse has been used extensively in engineering applications, particularly in multidiscipli-
nary design optimization. Researchers have used it to perform aerodynamic shape optimization
of aircraft wings (Secco & Martins, 2019), wind turbines (Madsen et al., 2019), and aerostruc-
tural optimization of an entire aircraft (Brooks et al., 2018). pyOptSparse is also supported by
OpenMDAO (Gray et al., 2019), a popular Python framework for multidisciplinary analysis
and optimization. Through OpenMDAO, pyOptSparse has been applied to problems such
as low-fidelity aerostructural wing design (Chauhan & Martins, 2018) and aeropropulsive
optimization of a boundary-layer ingestion propulsor (Gray & Martins, 2018).

Acknowledgements
We acknowledge the original pyOpt developers’ efforts, notably Ruben E. Perez and Peter W.
Jansen, who helped lay the code’s foundation. We also acknowledge the numerous pyOptSparse
users who have contributed to the code over the years.

References
Brooks, T. R., Kenway, G. K. W., & Martins, J. R. R. A. (2018). Benchmark aerostructural

models for the study of transonic aircraft wings. AIAA Journal, 56(7), 2840–2855.
https://doi.org/10.2514/1.J056603

Chauhan, S. S., & Martins, J. R. R. A. (2018). Low-fidelity aerostructural optimization of
aircraft wings with a simplified wingbox model using OpenAeroStruct. Proceedings of
the 6th International Conference on Engineering Optimization, EngOpt 2018, 418–431.
https://doi.org/10.1007/978-3-319-97773-7_38

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019).
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and op-
timization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https:
//doi.org/10.1007/s00158-019-02211-z

Gray, J. S., & Martins, J. R. R. A. (2018). Coupled aeropropulsive design optimization of
a boundary-layer ingestion propulsor. The Aeronautical Journal, 123(1259), 121–137.
https://doi.org/10.1017/aer.2018.120

Johnson, S. G. (2020). The NLopt nonlinear-optimization package. http://github.com/
stevengj/nlopt

Kraft, D. (1988). A software package for sequential quadratic programming. Tech. Rep.
DFVLR-FB 88-28, DLR German Aerospace Center.

Madsen, M. H. Aa., Zahle, F., Sørensen, N. N., & Martins, J. R. R. A. (2019). Multipoint
high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine. Wind
Energy Science, 4, 163–192. https://doi.org/10.5194/wes-4-163-2019

Martins, J. R. R. A., Sturdza, P., & Alonso, J. J. (2003). The complex-step derivative
approximation. ACM Transactions on Mathematical Software, 29(3), 245–262. https:
//doi.org/10.1145/838250.838251

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

6

https://doi.org/10.2514/1.J056603
https://doi.org/10.1007/978-3-319-97773-7_38
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1017/aer.2018.120
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.21105/joss.02564

Perez, R. E., Jansen, P. W., & Martins, J. R. R. A. (2012). pyOpt: A Python-based object-
oriented framework for nonlinear constrained optimization. Structural and Multidisciplinary
Optimization, 45(1), 101–118. https://doi.org/10.1007/s00158-011-0666-3

Secco, N. R., & Martins, J. R. R. A. (2019). RANS-based aerodynamic shape optimization
of a strut-braced wing with overset meshes. Journal of Aircraft, 56(1), 217–227. https:
//doi.org/10.2514/1.C034934

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …
Contributors, S. 1. 0. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wu et al. (2020). pyOptSparse: A Python framework for large-scale constrained nonlinear optimization of sparse systems. Journal of Open Source
Software, 5(54), 2564. https://doi.org/10.21105/joss.02564.

7

https://doi.org/10.1007/s00158-011-0666-3
https://doi.org/10.2514/1.C034934
https://doi.org/10.2514/1.C034934
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.02564

	Summary
	Features
	Support for multiple optimizers
	String-based indexing
	Support for sparse linear and nonlinear constraints
	Automatic computation of derivatives
	Optimizer-independent problem scaling
	Parallel execution
	Leveraging the history file: visualization and restart

	Simple optimization script
	Statement of Need
	Acknowledgements
	References

