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Summary

Scientists and engineers employ stochastic numerical simulators to model empirically observed
phenomena. In contrast to purely statistical models, simulators express scientific principles that
provide powerful inductive biases, improve generalization to new data or scenarios and allow for
fewer, more interpretable and domain-relevant parameters. Despite these advantages, tuning
a simulator’s parameters so that its outputs match data is challenging. Simulation-based
inference (SBI) seeks to identify parameter sets that a) are compatible with prior knowledge
and b) match empirical observations. Importantly, SBI does not seek to recover a single ‘best’
data-compatible parameter set, but rather to identify all high probability regions of parameter
space that explain observed data, and thereby to quantify parameter uncertainty. In Bayesian
terminology, SBI aims to retrieve the posterior distribution over the parameters of interest. In
contrast to conventional Bayesian inference, SBI is also applicable when one can run model
simulations, but no formula or algorithm exists for evaluating the probability of data given
parameters, i.e. the likelihood.
We present sbi, a PyTorch-based package that implements SBI algorithms based on neu-
ral networks. sbi facilitates inference on black-box simulators for practising scientists and
engineers by providing a unified interface to state-of-the-art algorithms together with docu-
mentation and tutorials.

Motivation

Bayesian inference is a principled approach for determining parameters consistent with em-
pirical observations: Given a prior over parameters, a stochastic simulator, and observations,
it returns a posterior distribution. In cases where the simulator likelihood can be evaluated,
many methods for approximate Bayesian inference exist (e.g., Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953; Baydin et al., 2019; Graham & Storkey, 2017; Le, Baydin, &
Wood, 2017; Neal, 2003). For more general simulators, however, evaluating the likelihood of
data given parameters might be computationally intractable. Traditional algorithms for this
‘likelihood-free’ setting (Cranmer, Brehmer, & Louppe, 2020) are based on Monte-Carlo re-
jection (Pritchard, Seielstad, Perez-Lezaun, & Feldman, 1999; Sisson, Fan, & Tanaka, 2007),
an approach known as Approximate Bayesian Computation (ABC). More recently, algorithms
based on neural networks have been developed (Greenberg, Nonnenmacher, & Macke, 2019;
Hermans, Begy, & Louppe, 2020; Lueckmann et al., 2017; Papamakarios & Murray, 2016;
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Papamakarios, Sterratt, & Murray, 2019). These algorithms are not based on rejecting simu-
lations, but rather train deep neural conditional density estimators or classifiers on simulated
data. To aid in effective application of these algorithms to a wide range of problems, sbi
closely integrates with PyTorch and offers state-of-the-art neural network-based SBI algo-
rithms (Greenberg et al., 2019; Hermans et al., 2020; Papamakarios et al., 2019) with flexible
choice of network architectures and flow-based density estimators. With sbi, researchers can
easily implement new neural inference algorithms, benefiting from the infrastructure to man-
age simulators and a unified posterior representation. Users, in turn, can profit from a single
inference interface that allows them to either use their own custom neural network, or choose
from a growing library of preconfigured options provided with the package.

Related software and use in research

We are aware of several mature packages that implement SBI algorithms. elfi (Lintusaari
et al., 2018) is a package offering BOLFI, a Gaussian process-based algorithm (Gutmann &
Corander, 2016), and some classical ABC algorithms. The package carl (Louppe, Cranmer,
& Pavez, 2016) implements the algorithm described in Cranmer, Pavez, & Louppe (2015).
Two other SBI packages, currently under development, are hypothesis (Hermans, 2019) and
pydelfi (Alsing, 2019). pyabc (Klinger, Rickert, & Hasenauer, 2018) and ABCpy (Dutta,
Schoengens, Onnela, & Mira, 2017) are two packages offering a diversity of ABC algorithms.
sbi is closely integrated with PyTorch (Paszke et al., 2019) and uses nflows (Durkan,
Bekasov, Papamakarios, & Murray, 2019) for flow-based density estimators. sbi builds on
experience accumulated developing delfi (mackelab.org, 2017), which it succeeds. delfi
was based on theano (Al-Rfou et al., 2016) (development discontinued) and developed both
for SBI research (Greenberg et al., 2019; Lueckmann et al., 2017) and for scientific applications
(Gonçalves et al., 2019). The sbi codebase started as a fork of lfi (Durkan, 2020), developed
for Durkan et al. (2020).

Description

sbi currently implements three families of neural inference algorithms:

• Sequential Neural Posterior Estimation (SNPE) trains a deep neural density estimator
that directly estimates the posterior distribution of parameters given data. Afterwards,
it can sample parameter sets from the posterior, or evaluate the posterior density on
any parameter set. Currently, SNPE-C (Greenberg et al., 2019) is implemented in sbi.

• Sequential Neural Likelihood Estimation (SNLE) (Papamakarios et al., 2019) trains a
deep neural density estimator of the likelihood, which then allows to sample from the
posterior using e.g. MCMC.

• Sequential Neural Ratio Estimation (SNRE) (Durkan et al., 2020; Hermans et al., 2020)
trains a classifier to estimate density ratios, which in turn can be used to sample from
the posterior e.g. with MCMC.

The inference step returns a NeuralPosterior object that represents the uncertainty about
the parameters conditional on an observation, i.e. the posterior distribution. This object can
be sampled from —and if the chosen algorithm allows, evaluated— with the same API as a
standard PyTorch probability distribution.
An important challenge in making SBI algorithms usable by a broader community is to deal
with diverse, often pre-existing, complex simulators. sbi works with any simulator as long
as it can be wrapped in a Python callable. Furthermore, sbi ensures that custom simulators
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work well with neural networks, e.g. by performing automatic shape inference, standardizing
inputs or handling failed simulations. To maximize simulator performance, sbi leverages
vectorization where available and optionally parallelizes simulations using joblib (Varoquaux,
2008). Moreover, if dimensionality reduction of the simulator output is desired, sbi can use
a trainable summarizing network to extract relevant features from raw simulator output and
spare the user manual feature engineering.
In addition to the full-featured interface, sbi provides also a simple interface which consists
of a single function call with reasonable defaults. This allows new users to get familiarized
with simulation-based inference and quickly obtain results without having to define custom
networks or tune hyperparameters.
With sbi, we aim to support scientific discovery and computational engineering by making
Bayesian inference applicable to the widest class of models (simulators with no likelihood
available), and practical for complex problems. We have designed an open architecture and
adopted community-oriented development practices in order to invite other machine-learning
researchers to join us in this long-term vision.
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