
pyomeca: An Open-Source Framework for
Biomechanical Analysis
Romain Martinez1, Benjamin Michaud1, and Mickael Begon1

1 School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
DOI: 10.21105/joss.02431

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @BKillen05
• @mitkof6

Submitted: 09 June 2020
Published: 03 September 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of Need

Biomechanics is defined as the study of the structure and function of biological systems by
means of the methods of mechanics (Hatze, 1974). While musculoskeletal biomechanics
branches into several subfields, the data used are remarkably similar. The processing, analysis
and visualization of these data could therefore be unified in a software package. Most biome-
chanical data characterizing human and animal movement appear as temporal waveforms
representing specific measures such as muscle activity or joint angles. These data are typically
multidimensional arrays structured around labels with arbitrary metadata (Figure 1). Existing
software solutions share some limitations. Some of them are proprietary (Damsgaard, Ras-
mussen, Christensen, Surma, & Zee, 2006) or based on closed-source programming language
(Dixon, Loh, Michaud-Paquette, & Pearsall, 2017; Muller, Pontonnier, Puchaud, & Dumont,
2019). Others do not leverage labels and metadata (Hachaj & Ogiela, 2019; Virtanen et al.,
2020; Walt, Colbert, & Varoquaux, 2011). pyomeca is a Python package designed to address
these limitations. It provides basic operations useful in the daily workflow of a biomechanical
researcher such as reading, writing, filtering and plotting, but also more advanced biomechan-
ical routines geared towards rigid body mechanics and signal processing. By offering a single,
efficient and flexible implementation, pyomeca standardizes these procedures, freeing up valu-
able research time, thereby allowing researchers to focus on the scientific research questions
at hand.

rate = 100.0
units = "mm"
particiant = 12
date = "2019-02-17"
group = "control"

Metadata

axes = ["x", "y", "z"]
markers = ["LASI", "RASI"]
time = [0.0, 0.01, 0.02, 0.03, 0.04]

Labels

markers

axes

ti
me

Data

Figure 1: An example of musculoskeletal biomechanical data with skin marker positions. These data
are inherently multidimensional and structured around labels. Metadata are also needed to inform
about important features of the experiment.

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

1

https://doi.org/10.21105/joss.02431
https://github.com/openjournals/joss-reviews/issues/2431
https://github.com/pyomeca/pyomeca/
https://doi.org/10.5281/zenodo.4012118
https://kevinmoerman.org
https://github.com/BKillen05
https://github.com/mitkof6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02431


Summary

As a Python library, pyomeca enables extraction, processing and visualization of biomechanical
data for use in research and education. It is motivated by the need for simpler tools and more
reproducible workflows allowing practitioners to focus on their specific interests and leaving
pyomeca to handle the computational details for them. pyomeca builds on the core scientific
Python packages, in particular numpy (Walt et al., 2011), scipy (Virtanen et al., 2020),
matplotlib (Hunter, 2007) and xarray (Hoyer & Hamman, 2017). By providing labeled
querying and computation, efficient algorithms and persistent metadata, the integration of
xarray facilitates usability, which seems to be relevant in a context where scientists do not
always receive extensive training in programming. xarray is designed as a general-purpose
library and tries to avoid including domain specific functionalities — but inevitably, the need
for more domain specific logic arises. pyomeca provides a biomechanics layer that supports
specialized file formats (c3d, mat, trc, sto, mot, csv and xlsx) and implements signal
processing and matrix manipulation routines commonly used in musculoskeletal biomechanics.
We believe pyomeca is a solid foundation for more advanced research implementations and
could, in the future, provide functions for processing and extracting meaningful clinical outputs
from the raw data. pyomeca was written with the Unix philosophy in mind, that is to design
each program to do one thing well and expect the output of every program to become the input
to another, as yet unknown, program. As such, it is written in a modular, object-oriented way
— which makes it extensible and easy to develop — and it interacts well with other projects
under the pyomeca umbrella, namely ezc3d, pyosim or biorbd-viz. pyomeca follows
software best practices by being fully tested, linted and type annotated — ensuring that the
package is easily distributable and modifiable. In addition to the static documentation and
API reference, pyomeca includes a set of Jupyter Notebooks with examples. These notebooks
can be read and executed by anyone with only a web browser through binder.

Features

pyomeca inherits from the xarray feature set, which includes label-based indexing, arithmetic,
aggregation and alignment, resampling and rolling window operations, plotting, missing data
handling and out-of-core computation. In addition, pyomeca has four data structures built
upon xarray. Each structure is associated with a specific biomechanical data type:

• Angles: joint angles,
• Rototrans: rototranslation matrix,
• Analogs: generic signals such as electromyographic (EMG) and force signals or any

other analog signals,
• Markers: skin markers positions.

While there are technically dozens of functions implemented in pyomeca, one can generally
group them into two distinct categories: object creation and data processing.

Object Creation

The starting point for working with pyomeca is to create an object with one of the specific
methods associated with the different classes available. pyomeca offers several ways to create
these objects: by directly specifying the data, by sampling random data from distributions, by
converting other data structures or by reading files (Figure 2).

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

2

https://github.com/pyomeca
https://github.com/pyomeca/ezc3d
https://github.com/pyomeca/pyosim
https://github.com/pyomeca/biorbd-viz
https://pyomeca.github.io/
https://pyomeca.github.io/
https://mybinder.org/
https://doi.org/10.21105/joss.02431


Rototrans

Angles

from_rototrans

from_random_data

from_random_data

from_averaged_rototrans

from_euler_angles

from_markers

from_transposed_rototrans

from_random_data

from_c3d

from_csv

from_excel

from_mot

from_sto

Analogs

from_random_data

from_rototrans

from_c3d

from_csv

from_excel

from_trc

Markers

From scratch

From random data

From data structures

From files

Figure 2: pyomeca offers several ways to create specialized data structures: from scratch (orange),
from random data (red), from other data structures (blue) or from files (green).

Data Processing

pyomeca’s main functionality is to offer dedicated biomechanical routines. These features can
be broadly grouped into different categories: filtering, signal processing, normalization, matrix
manipulation and file output functions (Figure 3).

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

3

https://doi.org/10.21105/joss.02431


Filters

Signal processing

Normalization

Matrix manipulation

File output

band_passDataArrayAccessor

band_stop

high_pass

low_pass

normalize

time_normalize

abs

center

matmul

norm

rms

sqrt

square

to_csv

to_matlab

to_wide_dataframe

detect_onset

detect_outliers

fft

Figure 3: pyomeca data processing capabilities are available through the meca DataArrayAccessor
(e.g. array.meca) that allow implementing domain specific methods on xarray data objects. These
methods can be categorized into filters (orange), signal processing (red), normalization (blue), matrix
manipulation (green) and file output (purple) routines.

A Biomechanical Example: Electromyographic Pipeline

pyomeca has documented examples for different biomechanical tasks such as getting Euler
angles from a rototranslation matrix, creating a system of axes from skin markers positions
or setting a rotation or a translation. Another typical task concerns EMG data processing.
Using pyomeca, one can easily extract (Figure 4), process (Figure 5) and visualize (Figure 6,
Figure 7 and Figure 8) such data.

from pyomeca import Analogs

emg = Analogs.from_c3d("data.c3d")
emg.plot(x="time", hue="channel")

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

4

https://doi.org/10.21105/joss.02431


Figure 4: Biomechanical data are often stored in the c3d binary file format. Thanks to the ezc3d
library (Michaud & Begon, 2020), pyomeca can easily read these files and visualize them with the
matplotlib interface provided by xarray.

emg_processed = (
emg.meca.band_pass(order=2, cutoff=[10, 425])
.meca.center()
.meca.abs()
.meca.low_pass(order=4, cutoff=5)
.meca.normalize()

)
emg_processed.plot(x="time", col="channel", col_wrap=3)

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

5

https://doi.org/10.21105/joss.02431


Figure 5: EMG data analysis consists of a series of signal processing steps that can be carried out
by pyomeca in a clear and modular way.

import matplotlib.pyplot as plt

_, axes = plt.subplots(ncols=2)

emg_processed.mean("channel").plot(ax=axes[0])
emg_processed.plot.hist(ax=axes[1], bins=50)

Figure 6: It is straightforward to represent the average profile of the EMG signal (left) or the
distribution of EMG activations (right) thanks to xarray.

emg_dataframe = emg_processed.meca.to_wide_dataframe()
emg_dataframe.plot.box(showfliers=False)

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

6

https://doi.org/10.21105/joss.02431


Figure 7: pyomeca offers a method to convert the data structure into a pandas dataframe (McKinney,
2010). This allows users to further extend the plot possibilities using the visualization built into pandas
itself, such as boxplot.

emg_dataframe.corr().style.background_gradient().set_precision(2)

delt. med.delt. ant. delt. post. subscap.infra. supra.

delt. ant.

delt. med.

delt. post.

infra.

subscap.

supra.

1.0

0.78

0.38

0.74

0.6

0.6

0.78

1.0

0.77

0.74

0.76

0.9

0.38

0.77

1.0

0.62

0.67

0.84

0.74

0.74

0.62

1.0

0.61

0.75

0.6

0.76

0.67

0.61

1.0

0.78

0.6

0.9

0.84

0.75

0.78

1.0

Figure 8: By using a pandas dataframe, users also benefit from its broad range of IO tools and
statistical methods, such as computing the correlation matrix between the different muscles.

Research Projects Using pyomeca

You can find an up-to-date list of research projects using pyomeca on the static documentation.

Acknowledgements

pyomeca is an open-source project created and supported by the Simulation and Movement
Modeling (S2M) lab located in Montreal. We thank the contributors that helped build pyom
eca. You can find an up-to-date list of contributors on GitHub. We also would like to extend
thanks to the contributors of the libraries used to build pyomeca — particularly numpy (Walt
et al., 2011), scipy (Virtanen et al., 2020), matplotlib (Hunter, 2007) and xarray (Hoyer
& Hamman, 2017).

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

7

https://pyomeca.github.io/about/#papers-citing-pyomeca
https://github.com/pyomeca/pyomeca/graphs/contributors
https://doi.org/10.21105/joss.02431


References

Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & Zee, M. de. (2006). Anal-
ysis of musculoskeletal systems in the AnyBody modeling system. Simulation Modelling
Practice and Theory, 14(8), 1100–1111. doi:10.1016/j.simpat.2006.09.001

Dixon, P. C., Loh, J. J., Michaud-Paquette, Y., & Pearsall, D. J. (2017). BiomechZoo:
An open-source toolbox for the processing, analysis, and visualization of biomechanical
movement data. Comput. Methods Programs Biomed., 140, 1–10. doi:10.1016/j.cmpb.
2016.11.007

Hachaj, T., & Ogiela, M. R. (2019). RMoCap: An R language package for pro-
cessing and kinematic analyzing motion capture data. Multimedia Systems.
doi:10.1007/s00530-019-00633-9

Hatze, H. (1974). Letter: The meaning of the term “biomechanics”. J. Biomech., 7(2),
189–190. doi:10.1016/0021-9290(74)90060-8

Hoyer, S., & Hamman, J. J. (2017). xarray: N-D labeled arrays and datasets in Python.
Journal of Open Research Software, 5, 304. doi:10.5334/jors.148

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science Engi-
neering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Proceedings
of the 9th Python in Science Conference, Proceedings of the Python in Science Conference
(pp. 56–61). Austin, Texas: SciPy. doi:10.25080/Majora-92bf1922-00a

Michaud, B., & Begon, M. (2020). EZC3D: Easy to use C3D reader/writer in C++, Python
and Matlab. GitHub repository. GitHub. Retrieved from https://github.com/pyomeca/
ezc3d

Muller, A., Pontonnier, C., Puchaud, P., & Dumont, G. (2019). CusToM: A Matlab toolbox
for musculoskeletal simulation. JOSS, 4(33), 927. doi:10.21105/joss.00927

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nat. Methods, 17(3), 261–272. doi:10.1038/s41592-019-0686-2

Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for
efficient numerical computation. Comput. Sci. Eng., 13(2), 22–30. doi:10.1109/MCSE.
2011.37

Martinez et al., (2020). pyomeca: An Open-Source Framework for Biomechanical Analysis. Journal of Open Source Software, 5(53), 2431.
https://doi.org/10.21105/joss.02431

8

https://doi.org/10.1016/j.simpat.2006.09.001
https://doi.org/10.1016/j.cmpb.2016.11.007
https://doi.org/10.1016/j.cmpb.2016.11.007
https://doi.org/10.1007/s00530-019-00633-9
https://doi.org/10.1016/0021-9290(74)90060-8
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/pyomeca/ezc3d
https://github.com/pyomeca/ezc3d
https://doi.org/10.21105/joss.00927
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.02431

	Statement of Need
	Summary
	Features
	Object Creation
	Data Processing
	A Biomechanical Example: Electromyographic Pipeline

	Research Projects Using pyomeca
	Acknowledgements
	References

